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Objectives of Research 

 
 Parametric estimation, when expressed in the form of autoregressive models or linear 
prediction analysis or lattice filters or minimum variance distortion-less response adaptive filters, 
has been a major foundation for enhanced signal processing performance. Examples include high 
resolution spectral analysis, linear prediction coding for bit rate reduction, and enhanced 
detection statistic performance for space-time adaptive processing (STAP) using parametric 
forms of the inverse covariance matrix.  The mathematical matrix structures of most parametric 
estimators cited above are typically exploitable, leading to fast computational algorithms that 
reduce the computational burden by typically one to two orders of magnitude, making the 
parametric algorithms computationally competitive with more traditional non-parametric 
spectrum and filter applications. Parametric algorithms developed to date are one-dimensional 
(1-D), one-dimensional multi-channel (1-D MC) [one dimension is usually time], and two-
dimensional (2-D). Currently published two-dimensional fast algorithms are only efficient along 
one dimension because the other dimension is usually assumed to be fixed (a legacy of the 
development of published 2-D fast algorithms that are based on adaptations of the 1-D MC fast 
algorithm matrix structures). The objective of this research was to further exploit structure that 
exists to lead to even faster 2-D parametric estimation computational algorithms. 

 Four graduate students were supported to varying degrees by this AFOSR contract to 
investigate along four particular algorithm lines of parametric statistical estimation. A summary 
of this research is provided in the next section, and unpublished results are attached as 
appendices. 

 
Executive Summary of Research 

 
 The first line of investigatory research sponsored by this contract was a study of the 
minimum variance (MV) spectral estimator, a robust high-resolution frequency domain analysis 
tool for short data records. The traditional formulation of the minimum variance spectral 
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estimation (MVSE) depends on the inverse of a Toeplitz autocorrelation matrix, for which a fast 
computational algorithm exists that exploits this structure. This research investigation extended 
the MVSE approach to two data-only formulations linked to the covariance and modified 
covariance cases of least-squares linear prediction (LP), which require inversion of near-to-
Toeplitz data product matrices. The results of the research proved that the near-to-Toeplitz 
matrix inverses in the two new fast algorithms have special representations as sums of products 
of triangular Toeplitz matrices composed of the LP parameters of the least-squares-based 
formulations. From these, it was shown how to develop fast solutions of two least-squares-based 
minimum variance spectral estimators (LS-based MVSEs). These new MVSEs provide 
additional resolution improvement over the traditional autocorrelation-based MVSE. 
 The research results were published by Lin Wei (for her PhD theses) and S. Lawrence 
Marple Jr. in the journal Signal Processing under the title “Fast Algorithms for Least Squares 
Based Minimum Variance Spectral Estimator” (vol. 88, pp. 2181-2192, September 2008). 
 
 The second line of investigatory research sponsored by this contract was three-
dimensional (3-D) study in which the three dimensions are time (delay), frequency (Doppler 
shift), and cycle frequency (cyclostationary signal process). Separating and locating each digital 
communication signal in a dense signal environment are often impossible using traditional two-
parameter frequency-difference-of-arrival and time-difference-of-arrival (FDOA/TDOA) joint 
estimation 2-D tools. By adding a third parameter for the joint estimation, we have shown as part 
of our research how to achieve separation and localization not possible with just a 2-D scheme. 
We introduce the novelty of a new 3-D signal processing tool, the alpha cross ambiguity 
function, to exploit the joint three-parameter estimation problem. Specifically, we consider the 
problem of jointly estimating TDOA, FDOA, and the cyclic frequency alpha for spectrally, 
temporally and spatially interfering signals arriving at two spatially separated receivers. Even 
when they work, conventional methods for estimating TDOA and/or FDOA produce biased 
estimates when multiple emitters are located spatially close to each other and share the same 
regions of the spectrum at the same time. In this research, a new three-dimensional joint 
estimation method for TDOA, FDOA, and cyclic frequency parameters, called the alpha cross 
ambiguity function has been proposed, and an analysis to exploit the signal modulations with 
cyclostationary properties has been demonstrated. The alpha-CAF parameter estimation 
algorithm, as we term it, is introduced along with an analysis of its performance compared to 
conventional one-dimensional and two-dimensional estimators. The results are captured in 
Appendix A, abstracted from David Ohm’s PhD thesis with advisor S. Lawrence Marple, Jr. 
 
 The third line of investigatory research sponsored by this contract was a study to show 
how the two-dimensional parametric algorithms can be applied to sharpen the details of buried 
mines detected by ground penetration radar. The two dimensions considered were localized time 
and localized frequency. Time–frequency analysis techniques are used for buried plastic 
landmine detection with a forward-looking ground penetration radar (GPR) system. Several 
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time–frequency distributions are considered to characterize and interpret the scattering 
phenomena of both targets and clutter. An ambiguity function based detector is also presented, 
which employs principal component analysis and feature selection for data dimensionality 
reduction and linear discrimination analysis for signal classification. Experimental results based 
on the SRI (Stanford Research Institute)-provided experimentally measured forward-looking 
GPR data were processing, and shown to provide a significant detection performance 
improvement over the conventional detection schemes. The results were presented by Master’s 
degree candidate Matthew Fleming, advisor S. Lawrence Marple, Jr., and published at the 
August 2009 NATO Advanced Study Institute (AS) on Unexploded Ordnance Detection and 
Mitigation at Il Ciocco, Italy. Appendix B contains the poster from this workshop. 
 
 The fourth line of investigatory research sponsored by this contract was a study to 
develop computational superfast MVSE 1-D and 2-D algorithms, in pick up another order of 
magnitude reduction in computations. The minimum variance spectral estimator (sometimes 
referenced as the Capon spectral estimator, or the minimum variance distortion-less response 
estimator) is a high resolution spectral estimator used extensively in practice as an alternative to 
the classical squared-magnitude Fourier estimator. In its original form without special 
algorithms, it requires order 3p  computations, in which p is the minimum variance filter size. 
The current implementation used in practice employs a fast algorithm developed by Musicus, 
requiring order 2p  computations. This research has provided discoveries of additional 
exploitable structure to bring the computational order down to 2logp p , creating a superfast 
algorithm. 
 The standard expression for the one-dimensional minimum variance spectral estimator 
(1-D MVSE) is 

(1)  1( )
( ) ( )MV H

TP f
f f−=

e R e
 

in which T is the sampling interval, ( ) [1exp( 2 ) exp( 2 )]Tf j fT j fpTπ π=e  is the frequency 
vector, and R is the  correlation matrix, often formed using estimated correlations 

produced from a limited data sample record. This takes order 

( 1) (p p+ × +1)
3p computations to evaluate. 

Because the inverse correlation matrix can be expressed in terms of the sum of products of 
triangular Toeplitz matrices formed from the autoregressive (AR) parameters  [1], Musicus 

[IEEE Trans. Sig. Proc., October 1985] discovered a mathematically equivalent restructuring of 
the MVSE as 
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in which the  coefficients are calculated as a linearly weighted correlation of AR 
parameters 

[ ]MV kΨ
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for . Algorithms exist (for example, Yule-Walker and Burg algorithms) that generate 

estimates of AR parameters from data records, most requiring order 

p k p− ≤ ≤
2p  computations, which is 

also that required to compute the coefficients of Eq. (3). An FFT is then used to compute the 
denominator of Eq. (2). We have discovered additional structure that can further reduce the 
computations by instead evaluating the MVSE as 
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in which FFTs are used to evaluate the following transforms that use the AR parameters 
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By eliminating the correlation of the AR parameters used in Eq. (3), the computational count is 
reduced further to 2logp p . Note that one transform is the derivative of the other,  

(7) ( )( )
2

j A fB f
T fπ
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∂

 

providing another possible interpretation of the 1-D MVSE denominator function and another 
possibility for computational reduction. The 2-D MVSE has also been evaluated for similar 
reductions in computations.  
 The results of this research, by PhD candidate Majid Adeli and advisor S. Lawrence 
Marple, Jr., may be found in the conference proceedings for the 44th Asilomar Conference on 
Signals, Systems, and Computers, November 2010, in a paper entitled “Super-Fast Algorithm for 
Minimum Variance (Capon) Spectral Estimation”. 
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Chapter 1 – INTRODUCTION

1.1 Background and Motivation

The problem of locating a signal source, or an emitter, has many civilian and mili-

tary applications, such as communication regulations enforcement, military reconnais-

sance, and search-and-rescue operations. Many of the most widely used emitter location

methods rely on the accurate and robust estimation of the differential time-delay, or

time-difference-of-arrival (TDOA), between signal replicas arriving at two spatially sep-

arated receivers. Often, at least one of the receivers is located on a moving platform

such as an airplane, resulting in relative motion between the emitter and one or more of

the receivers. This relative motion results in a differential Doppler shift, or frequency-

difference-of-arrival (FDOA), that can be measured and exploited along with TDOA

measurements to locate an emitter.

Many of the conventional methods for estimating TDOA are based on coherence

and time-delay estimation techniques that were developed within the sonar and radar

research communities [1]. One of the most popular TDOA estimation algorithms is called

the generalized cross correlation (GCC) method. The GCC method has many variations

and can be a robust TDOA estimation technique in many applications. However, it

performs poorly against multiple signals that overlap within the same frequency band,

and it is unable to produce separate unbiased estimates when multiple emitters are

located spatially close to each other, resulting in unresolvable TDOA estimates. [1, 9, 10].

A popular conventional method for jointly estimating both TDOA and FDOA, called

cross ambiguity function (CAF) processing, was introduced in the 1980’s [4], and has



2

been widely used for emitter location and radar processing applications [5]. Although

the CAF method can jointly estimate both TDOA and FDOA, later in this thesis it

is demonstrated that it performs poorly against spectrally overlapping signals, and it

is unable to produce separate unbiased TDOA and FDOA estimates when multiple

emitters are located spatially close (often less than a 1–2 kilometers) to each other. In

many cases the spatial proximity at which the GCC and CAF methods fail is still too

large to ignore for emitter location applications. The limitations of the GCC and CAF

methods motivate the need for new jointly estimated TDOA and FDOA estimation

algorithms that can produce unbiased kinematic parameter estimates from spectrally

overlapping signals regardless of their source location.

Traditionally, when spatially close emitters overlap spectrally and temporally, ac-

curate TDOA and FDOA estimation is difficult, and precise emitter location is often

not possible. However, by exploiting a signal parameter of bauded signals called cyclic

frequency a signal-of-interest (SOI) can be separated from a signal(s)-not-of-interest

(SNOI) that is within the receiver’s field of view. This can be critical, for example, in

a search-and-rescue application where the timely location of a lost individual depends

on the capability of an algorithm to separate the individual’s radio signal from other

received signals using the same region of the radio frequency (RF) spectrum. This prob-

lem is made even more difficult when the actual locations of the SNOI emitters are

unknown and approximately in the same area as the SOI emitter. Figure 1.1 illustrates

the scenario of a lost hiker using a radio or handset to call for help while another emitter

sharing the same frequency-band is located within a range of 1–2 kilometers. At this

range conventional methods may fail to produce accurate TDOA and FDOA estimates

from the hiker’s signal due to the interfering emitter. As depicted in the figure, in

this thesis a new alpha cross ambiguity function called alphaCAF is introduced that

will produce accurate TDOA and FDOA estimates for a bauded SOI regardless of the
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interfering emitter’s location.

Figure 1.1: Illustration of a lost hiker using a radio within 1–2 kilometers of a co-
channel emitter. Using conventional methods the TDOA and FDOA parameters needed
for geolocation of the hiker’s radio emitter cannot be determined. However, the new
alphaCAF method introduced in this thesis can be used to distinguish (separate) the
emitters and to determine usable geolocation solutions.

When a SNOI occupies the same spectral band as the SOI, it is referred to as co-

channel interference (CCI). CCI presents a significant challenge and can severely limit

the capability of conventional methods to correctly estimate TDOA and FDOA for the

SOI. When both a SOI and a SNOI are present, methods for mitigating the SNOI

interference must be used in order to achieve reliable estimation results. If the SOI

exhibits a property called cyclostationarity, then it is possible to separate that signal

from the interfering signal by using cyclostationary processing techniques.

Cyclostationarity is exhibited by man-made signals that employ periodic generation

methods such as modulation, channel coding, etc. [13]. There have been several tech-

niques introduced in the literature for exploiting cyclostationarity in order to estimate

TDOA only [9, 12]. However, all of these methods assume that the received signals are
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not Doppler shifted, or that the Doppler shift is a known quantity that can be compen-

sated. As mentioned earlier, the conventional CAF method can jointly estimate both

TDOA and FDOA [4, 6, 8]. However, the CAF method fails to provide separate unbi-

ased estimates when CCI is present and the SOI and SNOI emitters are spatially close.

For this reason, a the new joint estimation method, called the alphaCAF method, is

introduced in this thesis. The alphaCAF method exploits cyclostationarity to overcome

the limitations of the conventional estimators. In general, through the exploitation of a

parameter called cyclic frequency (represented by the symbol α) it is demonstrated in

this thesis that it is possible to produce unbiased joint TDOA and FDOA estimates for

emitter location applications even when CCI causes conventional methods to fail. Not

only can alphaCAF be used as a new joint TDOA and FDOA estimator, similar to the

conventional CAF, it is actually a three-dimensional cross correlation function of the

three parameters: delay, Doppler shift, and cyclic frequency. However, in most practical

applications one parameter will be fixed and the other two jointly estimated. For emitter

location applications the kinematic-dependent parameters are of most interest, so cyclic

frequency can be fixed and TDOA and FDOA jointly estimated.

Once TDOA and FDOA estimates are produced for a specific SOI, they can be used

to estimate the emitter’s position using a geolocation algorithm. It is not the goal of this

thesis to introduce any new geolocation algorithms. However, a common geolocation

method will be discussed in order to highlight how TDOA and FDOA measurements are

used in emitter location applications for the ultimate goal of producing emitter location

estimates on the earth’s surface.
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1.2 Thesis Organization

Chapter 2 presents a review of the most common conventional methods for TDOA and

FDOA estimation used in emitter location applications. Section 2.1 introduces several

common signal models used for developing TDOA and FDOA estimation algorithms.

The signal models are introduced together with a discussion about their underlying as-

sumptions and limitations. After the discussion on signal models, Section 2.2 introduces

the GCC method of time delay estimation. The GCC method was developed for sonar

signal processing applications several decades ago and has been proved to be a robust

and powerful tool for estimating TDOA [2, 3]. However, with the increasing use of the

radio spectrum for modern communications, the GCC method is not always reliable

when used in complex signal environments. In section 2.2.1 Several variations of the

GCC method are discussed, and GCC processing results are presented using simulated

data.

Following the discussion about the GCC method, Section 2.3 introduces the CAF

method for jointly estimating TDOA and FDOA. In addition to the necessary math-

ematical background, practical issues for using the CAF method are introduced along

with simulated application examples. The CAF method has great utility in making the

TDOA and FDOA measurements needed in common geolocation algorithms. However, it

will be shown that it fails to produce reliable measurements in a CCI environment when

multiple emitters are located spatially close together. Although several computationally

efficient methods for computing the CAF have been introduced in the literature [4, 6, 8],

CAF processing can still require large computational resources, making it unattractive

for some applications. This fact is discussed and used to motivate the method introduced

in Section 2.4.

Section 2.4 introduces the hybrid TDOA and FDOA estimation method, which uses
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the GCC concept, together with coherence processing techniques, to arrive at an algo-

rithm for iteratively generating both TDOA and FDOA measurements. This is done

without the computational burden associated with computing the CAF.

The overview and background of the conventional methods presented in Chapter 2

demonstrates the limitations of these methods for estimating TDOA and FDOA in a

modern signal environment. Chapter 3 introduces cyclostationary processing, along with

its use for separating a SOI from interference by exploiting periodic phenomena found in

many man-made signals. Several features of cyclostationary processing are explained and

demonstrated. In section 3.3, methods for using cyclostationary processing techniques

to estimate TDOA are introduced and demonstrated.

Chapter 4 introduces the new alphaCAF algorithm for jointly estimating TDOA,

FDOA and cyclic frequency. The algorithm is derived using multiple approaches, in-

cluding a heuristic approach and a maximum likelihood (ML) approach, and demon-

strated using simulated signals. The advantages of the new alphaCAF method over the

conventional methods are illustrated by means of simulated examples.

Chapter 5 introduces two simulated test environments used to test the performance

of the algorithms presented in this thesis. Section 5.2 presents a qualitative assessment

demonstrating the alphaCAF method’s capability to produce separate unbiased TDOA

and FDOA estimates when the conventional CAF cannot. Section 5.3 continues this

analysis with a quantitative assessment of alphaCAF method’s capability to produce

separate unbiased TDOA and FDOA estimates.

Chapter 6 presents a detailed assessment of the parametric tradeoffs when using the

alphaCAF method. The capability of the alphaCAF method to resolve individual signal

parameters is demonstrated, along with the probabilistic performance of the algorithm

as an estimator and detector. Use of the algorithm with multiple mixed-modulation

types is also illustrated.
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Chapter 7 demonstrates how TDOA and FDOA measurements are used for geoloca-

tion. In Section 7.1 a historical review of emitter location methods is introduced. Section

7.2 gives an introduction to a conventional geolocation method by providing the details

of the Newton-Raphson algorithm. The importance of the error ellipse is also discussed.

A geolocation example is given to demonstrate the advantages of the alphaCAF method

over the conventional CAF method for precision geolocation applications.

Chapter 8 concludes this dissertation with a review of the performance results achieved

by the new algorithm compared to the conventional methods. Section 8.2 discusses sug-

gested areas for further research.

1.3 Summary of Contributions

The research presented in this thesis introduces a new three-dimensional correlation

function, called the alpha cross ambiguity function, or alphaCAF. The alphaCAF is ca-

pable of jointly estimating TDOA, FDOA and cyclic frequency (α) parameters from

signal replicas arriving at two spatially separated receivers. TDOA and FDOA are the

kinematic parameters needed to locate an emitter using common geolocation techniques.

Multiple signal interference and spatial proximity between emitters can cause conven-

tional methods, such as the CAF method, to produce unresolvable biased estimates.

In contrast the alphaCAF method can separate signals according to their unique baud

rates and produce resolved TDOA and FDOA estimates. Although several conventional

one-dimensional and two-dimensional cross correlation functions have been previously

developed to separate signals based on their kinematic parameters [1, 4, 9], all of these

conventional methods fail when multiple signals overlap temporally and spectrally, and

the signal emitters are located spatially close. For example, the CAF method can jointly

estimate TDOA and FDOA. However, for a random signal the CAF resolution spacing
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will have a nominal width in the TDOA dimension that is proportional to 1/Bs, where

Bs is the nominal width of the received signal power spectrum [4]. Likewise, the peak

width in the FDOA dimension will be proportional to 1/(NTs), which is the data record

length. If two co-channel emitters are located such that their true TDOA and FDOA

parameters do not map to well separated resolution cells then the CAF method may pro-

duce biased TDOA and FDOA estimates. These biased kinematic parameter estimates

will in turn prevent the geolocation algorithm from producing precise emitter location

estimates.

The alphaCAF method is the first practical three-dimensional cross correlation func-

tion for estimating TDOA, FDOA and cyclic frequency. Even though the alphaCAF

method is a three-dimensional estimator, throughout this thesis it is viewed in a two-

dimensional sub-version for purposes of illustrating performance and for solving a specific

emitter location problem. In many practical applications the cyclic frequency for a SOI

may be known. In that case, it can be fixed within the alphaCAF computations, re-

sulting in a two-dimensional estimator for TDOA and FDOA. Likewise, if one of the

kinematic parameters is known, the alphaCAF can be used to jointly estimate the other

along with cyclic frequency. In cases where nothing is known, it can jointly estimate

both kinematic parameters and cyclic frequency. This makes the alphaCAF a powerful

tool for emitter location applications such as search-and-rescue, where there may be very

little information about a SOI that exists within an interference signal environment.

In this thesis, six research subtopics are addressed for the development of the al-

phaCAF method: 1) Signal models are developed for use in algorithm development. 2)

Conventional TDOA and FDOA parameter estimation techniques are introduced, along

with simulated examples related to real applications. 3) Modern signals are simulated

using realistic collection geometries for processing with the algorithms presented. 4)

The use of cyclostationary processing techniques for separating CCI signal parameters
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are presented 5) A qualitative and quantitative analysis of both the conventional CAF

and the new alphaCAF parameter estimators is given 6) A geolocation algorithm is in-

troduced to demonstrate how TDOA and FDOA parameters are used in practice, and

to demonstrate how the alphaCAF enables precise geolocation results. These subtopics

bring together the topics of kinematic parameter estimation and emitter location in a

manner not found in existing literature.

In this thesis the new alphaCAF algorithm for jointly estimating TDOA, FDOA

and cyclic frequency is derived heuristically and using maximum likelihood techniques.

Throughout the thesis, results from experiments are presented that strongly support

the claim that the alphaCAF method generates unbiased estimates when CCI causes

conventional methods to generate biased ones. In addition to the introduction of a new

three-dimensional joint estimation algorithm, detailed experimental testing results are

presented to support all claims made about both the conventional CAF method and the

new alphaCAF method. The experiments include testing the algorithms in both narrow-

band and wide-band interference environments, and against multiple signal modulation

types. Since an analytic approach to proving that the alphaCAF is an unbiased es-

timator has so far proved to be mathematically intractable, Monte Carlo testing has

been performed in order to get a statistical measure of how the conventional CAF and

alphaCAF methods compare to the published Cramer Rao lower bound (CRLB) in [4].

In addition, the alphaCAF method has been tested to determine its ability to separate

signals with only slightly different symbol rates. The combination of resolution, modu-

lation, symbol rate, and statistical testing presented in this thesis provides a perspective

into cyclostationary processing that cannot be found in previously published literature.

These efforts along with the robust solution to a real emitter location problem pro-

vided by the alphaCAF method constitute a serious contribution to the field of emitter

location.
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Chapter 2 – CONVENTIONAL TDOA AND FDOA ESTIMATION

METHODS

2.1 Signal Models

In order to properly setup the problem of estimating TDOA and FDOA for a SOI,

it is necessary to form a mathematical signal model that will adequately represent the

signal collection and will lead to tractable solutions. There have been several models

already presented in the literature [2, 4]. The most basic model is used to describe a

SOI collected in an additive white Gaussian noise (AWGN) environment by two spatially

separated receivers with no relative motion between them and the emitter. This model

is expressed as

x(t) = s(t) + nx(t) (2.1)

y(t) = s(t−D) + ny(t) (2.2)

where s(t) represents the SOI and nx(t) and ny(t) are zero-mean Gaussian noise terms.

In this model, the parameter of interest is D — i.e., the TDOA. Although this model is

mathematically simple, it is not always useful in real-world applications. For instance,

it does not take into account any amplitude or phase mismatch at the receivers, and it

assumes complete coherence between receivers. Also, the model does not allow for any

relative motion between the receivers and the emitter, discounting any Doppler shift or

time-varying Doppler shift that will result.

A narrow-band model that does take into account amplitude and phase mismatches
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and Doppler shift due to relative motion is expressed as

x(t) = s(t) + nx(t) (2.3)

y(t) = Ars(t−D) exp(j2πfdt) + ny(t) (2.4)

where Ar is a complex constant that represents the amplitude and phase mismatch of

received signal y relative to received signal x. The added exponential term in (2.4)

represents the differential Doppler shift due to relative motion between the receivers

and the emitter. Again, D is the TDOA parameter of interest. This model has been

widely used in the literature for deriving TDOA and FDOA estimation algorithms [4].

There are several other models in the literature that represent successively more

complicated scenarios. However, relatively basic models are typically used in actual

theoretical development in order to realize closed-form solutions. A more general signal

model, and one that is similar to the model used in Section 4.2 for new algorithm

development, is

x(t) = s(t) +
p∑
i=1

si(t) + nx(t) (2.5)

y(t) = Ars(t−D) exp(j2πfdt) +
p∑
i=1

si(t−Di) exp(j2πfdit) + ny(t) (2.6)

where again s(t) represents the SOI, nx(t) and ny(t) are zero-mean Gaussian noise terms,

D is the TDOA, and the si(t) term in both channels represents one or multiple SNOI,

possibly from co-channel emitters. This model also takes into account amplitude and

phase mismatch, Doppler shift, and the possibility that each SNOI can have a unique

delay and Doppler shift. The value of this model is that it accommodates the fact that

a SNOI can contribute unwanted correlations between receivers that can corrupt the

TDOA and FDOA estimates for the SOI. Although this model is more descriptive of
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real-world scenarios, it is mathematically complicated for theoretical work. Later in

this thesis some simplifying assumptions are made to the model in order to facilitate

theoretical progress.

2.2 Generalized Cross Correlation Method

There are two general methods for estimating the TDOA of a signal. The first method

requires subtracting the time-of-arrival (TOA) estimates from two receivers to produce a

relative measurement — i.e., the TDOA. The second method requires a cross correlation

between the signal collected at one receiver with the signal collected at another receiver.

The first method is only useful if there is an accurate timing reference between the

transmitter and the receiver. The second method is more generally applicable and

is the foundation of many of the most useful methods for estimating TDOA. One of

these methods is called the generalized cross correlation (GCC) method of time delay

estimation [2]. The GCC method was originally introduced as a method for estimating

TDOA for a SOI in the absence of relative motion between receivers and the emitter.

However, the GCC method can be used to produce a TDOA vs. time representation

when the change in TDOA is small compared to the receiver sample rate. The GCC

method concept can also be used in a modified algorithm, introduced in Section 2.4,

that can iteratively estimate both TDOA and FDOA for a SOI.

The GCC method is best understood by using the signal model in (2.3) and (2.4),

with fd = 0 (no Doppler shift). The signal model then becomes

x(t) = s(t) + nx(t) (2.7)

y(t) = Ars(t−D) + ny(t) (2.8)
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where s(t) represents the SOI, D is the TDOA, and nx(t) and ny(t) are zero-mean

Gaussian noise terms. This model assumes there are no spectral components from a

SNOI within the SOI frequency band, and there is no Doppler shift on the signals.

However, this model does accommodate amplitude and phase mismatches between the

receivers.

The autocorrelation and cross correlation functions computed using (2.7) and (2.8)

become

Rx(τ) = Rs(τ) +Rnx(τ) (2.9)

Ry(τ) = |Ar|2Rs(τ) +Rny(τ) (2.10)

Ryx(τ) = ArRs(τ −D) +Rnynx(τ) (2.11)

where the signal and noise signals are assumed to be uncorrelated, and therefore their

cross correlations are zero. In (2.11), D is the differential time delay, or the TDOA to be

estimated. The auto spectral density and cross-spectral density functions are computed

by taking the Fourier transform of (2.9)–(2.11), giving

Sx(f) = Ss(f) + Snx(f) (2.12)

Sy(f) = |Ar|2Ss(f) + Sny(f) (2.13)

Syx(f) = ArSs(f) exp(−j2πfD) + Snynx(f) . (2.14)

The GCC method can be derived [1] using the cross-spectral density function in

(2.14). Notice that the right side of (2.11) will be maximum when τ = D, which is

the TDOA of the SOI between the two receivers. If the signal-to-noise-ratio (SNR) is

assumed to be sufficiently high, then the noise terms in (2.11) and (2.14) can be ignored.

Taking the ratio of the cross-spectral density (2.14) with the auto-spectral density (2.12),
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and noting that the SOI only occupies a finite bandwidth around the carrier frequency

f0, gives

Syx(f)

Sx(f)
= Ar exp(j2πfD) for f0 −

Bs

2
≤ f ≤ f0 +

Bs

2
(2.15)

where Bs is the spectral bandwidth of the SOI. Taking the inverse Fourier transform of

this ratio

R̂yx(τ) =
∫ f0+Bs/2

f0−Bs/2

Syx(f)

Sx(f)
exp(j2πft) df (2.16)

gives the weighted cross correlation estimate, which can be further expressed as

R̂yx(τ) =
Ar sin(πBs(τ −D))

π(τ −D)
exp(j2πf0(τ −D)) . (2.17)

Notice that the real part of (2.17) is a sinc function multiplied by a sinusoid, which will

peak at τ = D. Equation (2.16) can be rewritten into a new form as

R̂yx(τ) =
∫ f0+Bs/2

f0−Bs/2
ψ(f)Syx(f) exp(j2πft) df (2.18)

where ψ(f) is now a weighting function equal to 1/Sx(f). Different weighting functions

can be used that result in an expression similar to (2.17) where the correlation function

peaks at τ = D. For example, notice that using a weighting function of ψ = 1 reduces

equation (2.18) to a simple cross correlation estimate. Given prior knowledge of the noise

characteristics of the received signals it is possible to choose a weighting function that

can help in reducing specific noise problems [2]. Several common weighting functions

are listed in Table 2.1. The respective advantages and disadvantages of the various

weighting functions have been thoroughly presented in [2, 3] and will not be repeated

here.
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Name Weighting Function

Cross Correlation 1

ROTH
1

Sx(f)

SCOT
1√

Sx(f)Sy(f)

PHAT
1

Sxy(f)

Table 2.1: Common weighting functions for the GCC method.

An expression for the variance of the TDOA estimate computed using the GCC

method was introduced in [3], to be

E(D̂ −D)2 =
3

4π2

1

T

1

B3
s

1

γ
. (2.19)

Equation (2.19) relates the estimation variance to the observation time T , receiver

effective-SNR 1/γ, and the signal bandwidth Bs. The effective-SNR is defined in [2]

to be

1

γ
=

1

2

[
1

γ1

+
1

γ2

+
1

γ1γ2

]
(2.20)

where γ1 and γ2 are the individual SNR’s at the first and second receivers respectively.

According to (2.19), the TDOA estimate accuracy improves — i.e., estimate variance

decreases, with increased signal bandwidth, greater effective SNR and longer observation

time.
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Figure 2.1 shows a block diagram for the process of computing the GCC output.

There are several techniques presented in the literature for computing the GCC output

[2]. However, most of them require some prior knowledge about the noise environment.

When no prior knowledge about the noise environment exists, the best weighting function

to use (and the one used for the examples in this section) is computed by

ψ(f) = 1/
√
Sx(f)Sy(f) , (2.21)

and is commonly called the smoothed coherence transform, or SCOT method (See Table

2.1).

Figure 2.1: GCC block diagram.

2.2.1 GCC Examples

In this section several examples are presented using the GCC method to estimate

TDOA for a SOI. For each example, and the examples that follow in later sections, a

program was developed in Matlab that simulates collection geometries with independent

positions and velocities for both the receivers and the emitters. The simulated signals for

both the SOI and the SNOI are rectangular windowed binary phase shift keyed (BPSK)

signals that have been downconverted to an intermediate frequency (IF). Appendix B
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describes these simulated signals in more detail. The signal parameters used to simulate

these signals are listed in Table 2.2.

SOI Parameters SNOI Parameters

fIF = 63
256
fs fIF = 56

256
fs

Rsym = 16
256
fs Rsym = 26

256
fs

fs = 1e6 Hz fs = 1e6 Hz

SNR = Adjustable SNR = Adjustable

FDOA = −850.0Hz * FDOA = −845.0Hz *

TDOA = 70.0µs * TDOA = 63.3µs *

* At center of collection time

Table 2.2: SOI and SNOI signal parameters used for simulating signals used in examples.

For all simulations the SOI emitter was assumed to be located at the origin of the

Cartesian coordinate system, or flat-earth model, shown in Figure 2.2. The use of a flat-

earth model simplifies the processing by assuming that the emitter and collectors exist

on or above a plane. Obviously, real-world systems involve curves in three-dimensional

space with spherical geometry, rather than planar geometry. However, a flat-earth model

is sufficient for evaluating the performance capabilities of the algorithms presented in

this thesis. In Figure 2.2, receiver 1 is a stationary ground-based receiver that is 5 km

away from the SOI emitter. Receiver 2 is an airborne receiver with a projected ground

distance of 30 km from the SOI emitter. The airborne receiver is flying directly toward
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the SOI emitter with an altitude of approximately 24,000 feet and a speed of 150 meters

per second.

Figure 2.2: Collection geometry for simulated examples.

Notice that in Figure 2.2 the Y-axis represents altitude above the earth with the X-

axis and Z-axis making up the ground plane. Both the ground receiver and the airborne

receiver are labeled along with the location of the SOI emitter and the SNOI emitter.

Figure 2.2 represents an instantaneous moment-in-time snapshot of the collection geom-

etry. Since the receivers and/or emitters are moving at their respective velocities, the

geometry changes with each passing instant of time. This is precisely why the TDOAs

and FDOAs are coupled (see Appendix A) in real-world emitter-collector scenarios. In

all of the examples presented in this thesis, both receiver sample rates are the same.

Figure 2.3 displays a plot of the GCC output when only the SOI and AWGN noise

are present at the receivers, and there is no Doppler shift — i.e., both receivers are

stationary. Also, the SNR at both receivers is simulated to be 20 dB. This represents a

high SNR scenario. Obviously, one might expect a different SNR at each receiver since

one receiver is much further away from the SOI emitter than the other. However, for
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convenience it is assumed that due to antenna and system gains they are equal before

sampling. Recall from Table 2.2 that the predicted TDOA for the SOI based on the

collection geometry is 70.0 microseconds. The TDOA measured from the peak in the

GCC output plot in Figure 2.3 is also 70.0 microseconds. Note that the sample spacing

between TDOA samples is 1/fs = 1.0 microseconds since there is no zero padding on the

inverse fast Fourier transform (IFFT) used to compute the cross correlation estimates.

Smaller sample spacings can be achieved by zero padding prior to the GCC output

transform, or by using interpolation on the output.

Figure 2.3: GCC SCOT method output for the BPSK SOI listed in Table 2.2 and
collected by two spatially separated stationary receivers. The data record length was
2048 samples and SNR = 20 dB at both receivers. Both receiver sample rate were 1
MHz.

The plot in Figure 2.4 shows the GCC output when the SNR at both receivers is

simulated to be -10 dB. This represents a low SNR scenario, and it is clear from the plot

that a TDOA measurement cannot be made. Remember, that according to (2.19) the
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Figure 2.4: GCC SCOT method output for the BPSK SOI listed in Table 2.2 and
collected by two spatially separated stationary receivers. The data record length was
2048 samples and SNR = -10 dB at both receivers. Both receiver sample rate were 1
MHz.

GCC method’s ability to produce an accurate estimate when the effective-SNR is low is

determined by the signal bandwidth and the observation time. Of course, since the signal

bandwidth is fixed, the only option is to use a longer observation time, possibly with

averaging. However, this is not always an option in real applications due to time-varying

effects, etc.

Significant Doppler shift can also be a problem when using the GCC method. Figure

2.5 shows the GCC output for a high SNR scenario where the received signal at the

airborne collector has a 850 Hz Doppler shift due to relative motion between the receiver

and the SOI emitter. It is easy to see from the plot that a TDOA measurement cannot

be made from the GCC output due to loss of coherence. This demonstrates a weakness

of the GCC method for use in emitter location applications. As the Doppler shift on

the SOI becomes higher, the GCC processing becomes less coherent over the collection
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duration until no correlation between signal replicas at the two receivers is possible.

Unless additional processing can be used to make the received signals coherent, the

GCC method is not suited for use when there is an expected large Doppler shift on the

SOI.

Figure 2.5: GCC SCOT algorithm output for the BPSK SOI listed in Table 2.2 and
collected by two spatially separated receivers. The signal at the second receiver has a
Doppler shift of -850 Hz due to motion of the receiver. The data record length was 2048
samples and the SNR = 20 dB at both receivers. Both receiver sample rate were 1 MHz.

It was mentioned in the introduction that co-channel interference, or CCI, can have

a deleterious effect on conventional TDOA and FDOA estimation methods. To demon-

strate this fact, Figures 2.6 and 2.7 show two GCC output plots from a case where the

SOI is corrupted by a SNOI. Since the SNOI completely overlaps the SOI spectrally,

this represents a wide-band interference environment. The SNOI emitter is also ap-

proximately only 1 km away from the SOI emitter. The plot in Figure 2.6 shows the

results when the SOI and the SNOI have the same SNR of 20 dB at both receivers. This

makes the signal-to-interference-ratio (SIR) equal to 0 dB. The largest peak in the GCC
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output can be measured at a TDOA of 63 microseconds. This is the predicted TDOA

for the SNOI. The TDOA for the SOI is more difficult to measure. Although there is a

peak at 70 microseconds, due to the other peaks in the vicinity having almost the same

magnitude it is not possible to confidently make a measurement.

Figure 2.6: GCC SCOT output for the BPSK SOI and BPSK SNOI listed in Table 2.2
and collected by two spatially separated stationary receivers. The data record length
was 2048 samples and the SNR = 20 dB at both receivers. Both receiver sample rate
were 1 MHz. The distance between the SOI and SNOI emitters is 1 km.

The plot in Figure 2.7 shows the same example but with a 0.5 km distance between

the SOI and SNOI emitters. A single peak is produced that does not correspond to the

predicted SOI TDOA, but instead to the predicted SNOI TDOA. This can be considered

a biased estimate of the SOI TDOA. This demonstrates that the GCC method can fail

to produce accurate, or unbiased TDOA estimates when certain CCI conditions occur.
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Figure 2.7: GCC SCOT output for the BPSK SOI and BPSK SNOI listed in Table 2.2
and collected by two spatially separated stationary receivers. The data record length
was 2048 samples and the SNR = 20 dB at both receivers. Both receiver sample rate
were 1 MHz. The distance between the SOI and SNOI emitters is 0.5 km.
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2.2.2 GCC TDOA vs. Time Representation

The GCC method can be used to form a TDOA vs. time representation that is useful

for looking at signals with intermittent on/off durations or signals with slowly changing

TDOA. Figures 2.8 and 2.9 show a TDOA vs. time representations computed using the

GCC SCOT method. For these examples, different SOI parameters than those listed in

Table 2.2 have been used for convenience, and a long duration data record has been used

in order to demonstrate the changing TDOA due to the airborne platform moving toward

and then away from the SOI emitter location. Using the TDOA vs. Time representation,

the TDOA corresponding to the SOI can be tracked over the entire collection duration.

This is a special application that could also be applied to a slowly moving emitter.

Figure 2.8: GCC vs. time for BPSK SOI showing time-varying TDOA estimates. SOI
used a 250 kHz center frequency and 100 kHz symbol rate. The data record length was
65,536 samples and the receiver sample rate was 1 MHz. Receiver 1 was stationary while
receiver 2 was moving with a velocity of 30 km/s.

Figure 2.9 demonstrates a scenario where both a SOI and a SNOI are present. Again,
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the SNOI parameters are different than those listed in Table 2.2. In this example the

SNOI originates from an emitter that is a large distance away from the SOI emitter so

that both the SOI and the SNOI have distinct TDOAs during most of the collection even

though they overlap spectrally. Although the TDOA vs. time representation provides a

useful tool for some applications, it still suffers from the limitations of the GCC method

in regards to CCI and closely located emitters.

Figure 2.9: GCC vs. time for BPSK SOI and BPSK SNOI showing time-varying TDOA
estimates. SOI used a 250 kHz center frequency and 100 kHz symbol rate. The SNOI
used a 200 kHz center frequency and 50 kHz symbol rate. The data record length was
65,536 samples and the receiver sample rate was 1 MHz. Receiver 1 was stationary while
receiver 2 was moving with a velocity of 30 km/s. The SNOI emitter was also moving
at 10 km/s
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2.3 Cross Ambiguity Function Method

Cross ambiguity function, or CAF, processing is a method for jointly estimating

TDOA and FDOA. Unlike the GCC method, it can be used when the SOI experiences

a large Doppler shift, and it can separate a SOI from a SNOI in the FDOA dimension

as well as the TDOA dimension if the differences in the TDOA and FDOA estimates

are resolvable. Before getting into the details of the CAF method, it is useful to further

understand the concepts behind FDOA and how it relates to TDOA.

The time-dependent propagation delay from an emitter to a receiver can be expressed

as

D(t) =
R(t)

c
(2.22)

where R(t) is the time-dependent range, or distance, from the emitter to the receiver,

and c is the speed of light. The range can be expanded into a Taylor series as

R(t) = R0 +
dR

dt
t+

1

2

d2R

dt2
t2 + . . . . (2.23)

If the observation interval is short, and the velocity of the receiver is relatively constant

over the observation interval, then the following approximation can be made

R(t) ≈ R0 +
dR

dt
t = R0 + vrt (2.24)

where vr is the magnitude of the receiver’s radial velocity in the direction of the emitter.

Using the approximation in (2.24) with (2.22), a received signal sr(t) can be modeled as

sr(t) = s (t−D(t)) ≈ s ((1− vr/c)t−R0/c) (2.25)
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where

R0 =
√

(x− xe)2 + (y − ye)2 + (z − ze)2 (2.26)

is the range to the emitter, with the receiver coordinates (x, y, z) and the emitter co-

ordinates (xe, ye, ze). Letting D = R0/c be the time independent propagation delay,

assuming that vr << c, and taking the general model of the emitted signal to be

s(t) = A(t) exp (j(2πfct+ φ(t))) (2.27)

the received signal in (2.25) can be expressed as

sr(t) = A(t−D) exp(jφ(t−D)) exp (j2πfct) exp (−j2πfdt) exp (−j2πfcD) (2.28)

where fc is the carrier frequency, fd = fcvr/c is a Doppler shift, and A(t−D) exp(jφ(t−

D)) is a complex amplitude term. It is easy to see that (2.28) has a carrier frequency

term, a constant phase term, and a Doppler shift term, in addition to the received

signal complex amplitude. The goal of the CAF processing method is to estimate the

propagation delay, D, and the Doppler shift, fd. Therefore, the CAF should be expected

to take the form of a two-dimensional correlation function over parameters TDOA and

FDOA.

It is reasonable at this point to ask how TDOA is related to FDOA. In Appendix A,

this relationship is derived to be

FDOA =
f

c
(vr1 − vr2) = (fc)

d(TDOA)

dt
(2.29)

where vr1 and vr2 are the velocities of the two separated receivers in the direction of the

emitter. In general, (2.29) says that a changing TDOA over the observation period gives



28

rise to a differential Doppler shift, or FDOA. This is why it is important to consider the

collection geometry when simulating signals to use for testing algorithms. The TDOA

and FDOA are coupled kinematic parameters, so one cannot independently simulate

them without considering the coupling effects through the collection geometry.

In the case of two receivers, CAF processing can be considered as a method similar to

finding the inner product between two vector spaces. In a two-dimensional vector space,

the inner product of two vectors will be maximum when the angle between the vectors is

zero. Following the same reasoning, the output of some yet-to-be-defined process will be

maximum when the two received signals correlate in time and frequency. If our received

signal model is

x(t) = s(t) + nx(t) (2.30)

y(t) = Ars(t−D) exp(j2πfdt) + ny(t) (2.31)

then the signal at one receiver can be incrementally delayed and time-shifted until the

output of the inner product between (2.30) and (2.31) is maximized. This concept can

be mathematically expressed by

A(τ, f) =
∫ T

0
x(t)y∗(t+ τ) exp(−j2πft) dt (2.32)

which is the expression for the conventional cross ambiguity function, or CAF. Notice

that when f = 0, (2.32) reduces to a simple cross correlation function estimate. Taking

the magnitude of both sides of (2.32) results in

|A(τ, f)| =
∣∣∣∣∣
∫ T

0
x(t)y∗(t+ τ) exp(−j2πft) dt

∣∣∣∣∣ , (2.33)
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which is the conventional complex CAF magnitude [4].

In order to gain further insight, it is useful to substitute the received signals into

(2.32) and expand the terms from (2.28) for the received signal y. Ignoring the carrier

frequency term and the constant phase term, this yields

A(τ, f) =
∫ T

0
sx(t) [A∗r exp(−j2π(f − fd)t) exp(j2πfdτ))] dt (2.34)

where fd is the Doppler shift parameter and D is the time-delay parameter to be esti-

mated, and

Ar = A(t−D + τ) exp(jφ(t−D + τ)) (2.35)

is the received signal complex amplitude. Note that the propagation delay is only in-

cluded in the received signal y. The received signal x can be replaced with the emitted

signal model in (2.27) without loss of generality. Clearly, the output of (2.34) is maxi-

mum when f = fd and τ = D.

The accuracy of the TDOA and FDOA estimates can be summarized with the fol-

lowing equations relating the standard deviation to the system parameters [4]:

σTDOA ≈ 0.55

Bs

1√
BnTγ

(2.36)

σFDOA ≈ 0.55

T

1√
BnTγ

(2.37)

where Bs is the signal RF bandwidth, Bn is the noise bandwidth of the receiver, T is

the total observation time, and γ is the effective-SNR defined in (2.20). These equations

also represent the CRLB on TDOA and FDOA estimation using the conventional CAF

[4].

Looking closer at (2.36) and (2.37) it is possible to predict that given a fixed SNR

at the receivers, a narrow bandwidth signal requires a long observation time in order to
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achieve a good TDOA estimate. This in turn results in a very good FDOA estimate.

However, long observation times may cause the CAF peak to smear if TDOA and FDOA

are not relatively constant over the observation time. It is worth emphasizing that for a

given input SNR and input bandwidth, the observation time, T , determines the accuracy

with which both TDOA and FDOA can be measured for a SOI.

In the discrete, sampled time case, the CAF is defined by substituting t = nTs and

f = kfs
N

into (2.32). This yields the expression

A(τ, k) =
N−1∑
n=0

x(n)y∗(n+D) exp

(
−j2πkn

N

)
(2.38)

where Ts is the sample period, fs = 1/Ts is the sampling frequency, n represents individ-

ual sample numbers, N is the total number of samples, and k represents the frequency

bin index, in which the actual frequency shift in Hz is k/NTs). The magnitude of (2.38)

will likewise peak when D (in integer sample units) and k/NTs are closest in sample

units to the TDOA and FDOA, respectively. For a random signal with no hidden period-

icities, the peak will have a nominal width in the TDOA dimension that is proportional

to 1/Bs, where Bs is the nominal width of the signal power spectrum [4]. Likewise, the

peak width in the FDOA direction will be proportional to 1/(NTs). This is why the

conventional methods produce biased estimates when emitters are too close together.

For example, if two emitters transmit signals with the same bandwidth of 100 kHz, then

their corresponding TDOAs will need to be at least 1/Bs = 10 microseconds apart in or-

der to get separate unique peaks from the CAF output. Note that the actual TDOA will

depend on the collection geometry. Likewise, if the collection length is 100 milliseconds

long then the FDOAs must differ by more than 1/T = 10 Hz.

As an example, the left plot in Figure 2.10 shows a detection surface, called a CAF

surface, generated by computing the CAF magnitude over a defined range of TDOA and
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FDOA values. The SOI parameters are listed in Table 2.2 and the collection geometry

is the same as it was for the GCC examples (See Figure 2.2). The SNR at both receivers

was fixed at 20 dB and the receiver sample rate was 1 MHz. For the computation

2048 samples were used, giving a collection duration of 2048× Ts = 2048 microseconds.

The right plot in Figure 2.10 is a top view of the CAF detection surface, providing an

alternative representation that can be instructive. It is easy to see that the CAF surface

contains a peak at coordinates corresponding to the estimated TDOA and FDOA values.

From this peak the TDOA is measured to be 69.0 microseconds. For comparison the

predicted TDOA value is 70.0 microseconds. The measured FDOA is -846 Hz and the

predicted FDOA is -850 Hz. Note that no interpolation has been used on the output

to get more precise measurements. Of course, higher resolution FDOA estimates are

possible with longer data record.

Figure 2.10: CAF surface for BPSK SOI collected at two spatially separated receivers
with an SNR = 20 dB at both receivers. The data record length was 2048 samples and
the receiver sample rates were 1 MHz. The peak location in the surface corresponds to
the TDOA and FDOA estimates. (Left). Top view of CAF surface on the left (Right).

Figure 2.11 shows cross-section plots through the peak in the CAF surface from Figure
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(2.10) in both the TDOA and FDOA dimensions. From these cross-section plots it is

easy to measure the peak locations at the estimated TDOA and FDOA values. Figures

2.12 and 2.13 are similar to Figures 2.10 and 2.11, but the SNR at the receivers was -5

dB.

Figure 2.11: Cross-section plots through Figure 2.10 CAF surface in both the TDOA
and FDOA dimensions showing a TDOA peak at 69 microseconds and an FDOA peak
at -846 Hz.

In some applications it is necessary to estimate TDOA and FDOA in real-time, or

near-real-time. However, CAF processing using direct computation of (2.38) is very

computationally intensive, and unless reduced data segments are used, it is often not

practical for most real-time applications. Also, direct computation of (2.38) estimates

TDOA for the range −NTs to NTs and FDOA for the range −fs
2

to fs
2

. Searching

this entire range requires 2N2 calculations, which becomes a difficult task for long data

records — i.e., large N . There are several published algorithms for computing the CAF

surface that provide some increased efficiency [4, 5]. Generally, these algorithms use

a coarse search over a decimated version of the entire data record followed by a fine

computation with interpolation over a reduced TDOA/FDOA evaluation range with the
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Figure 2.12: CAF surface for BPSK SOI collected at two spatially separated receivers
with an SNR = 20 dB at both receivers. The data record length was 2048 samples and
the receiver sample rates were 1 MHz. The peak location in the surface corresponds to
the TDOA and FDOA estimates. (Left). Top view of CAF surface on the left (Right).

Figure 2.13: Cross-section plots through Figure 2.12 CAF surface in both the TDOA
and FDOA dimensions showing a TDOA peak at 69 microseconds and an FDOA peak
at -846 Hz.

entire data set. The coarse search can be skipped if there is fairly good prior knowledge of

the actual TDOA and FDOA for the SOI. Details on how to compute the CAF surface
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using various more high computational efficiency algorithms can be found in several

excellent papers [4, 6, 7, 8] and will not be included here.

2.3.1 CAF Examples

In this section several examples of computed CAF surfaces using simulated data are

demonstrated. Each example attempts to represent a realistic collection scenario. How-

ever, two assumptions are made: 1) The simulated signals are corrupted with zero-mean

Gaussian noise. 2) The interference signal is simulated as a co-channel signal, or SNOI,

that overlaps temporally and spectrally with the SOI. The SNOI has the same modula-

tion as the SOI, but a different symbol rate and carrier frequency.

Figure 2.14 shows a CAF surface generated using data from a simulated collection

that includes both a SOI and a SNOI. The SNOI is from a co-channel emitter that is

approximately 1 km away from the SOI emitter. The SIR at both receivers is 0 dB.

The collection geometry is the same as that used for the GCC examples in Chapter 2

and is illustrated in Figure 2.2. The SOI and SNOI parameters are listed in Table 2.2.

Notice that the SNOI completely overlaps the SOI spectrally, making this an example

of wide-band CCI. The SNOI is also spatially close to the SOI. Both a 3-D view of the

CAF surface and a top-down 2-D view of the surface are displayed. Figure 2.15 displays

the cross-section plots through the CAF surface peak in both the TDOA and FDOA

dimensions.

It is easy to see in Figure 2.14 that, similar to the GCC method, the TDOA for both

the SOI and the SNOI is not completely resolvable and difficult to measure. However,

unlike the GCC method the CAF method worked with a Doppler shifted signal. The

peak corresponding to the SOI is distorted due to the interference of the SNOI and it is

not at the same TDOA and FDOA locations measured when only the SOI was present.
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Figure 2.14: CAF surface computed from BPSK SOI and BPSK SNOI collected at
two spatially separated receivers with an SIR = 0 dB. The signals were emitted from
locations that are 1 km apart. The data record length was 2048 samples and the receiver
sample rates were 1 MHz. (Left). Top view of CAF surface on the left (Right).

Figure 2.15: Cross-section plots through Figure 2.14 CAF surface in both the TDOA
and FDOA dimensions.

In fact, the SOI TDOA is measured to be 65 microseconds and the FDOA to be -850

Hz. This demonstrates the effects from the SOI and SNOI overlapping spectrally, and

originating from emitters that are located spatially close together. Figures 2.16 and 2.17
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demonstrate the same scenario, but with a SIR of -10 dB at the receivers.

Figure 2.16: CAF surface computed from BPSK SOI and BPSK SNOI collected at
two spatially separated receivers with an SIR = -10 dB. The signals were emitted from
locations that are 1 km apart. The data record length was 2048 samples and the receiver
sample rates were 1 MHz (Left). Top view of CAF surface on the left (Right).

Figure 2.17: Cross-section plots through Figure 2.16 CAF surface in both the TDOA
and FDOA dimension.

Because of the SNOI emitter location and the spectral overlapping, there is not a unique

peak in the CAF surface corresponding to the SOI. The TDOA measured is biased toward
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the actual SNOI TDOA. This problem would become even more severe for emitters less

than 1 km apart.

For another example, Figures 2.18 and 2.19 demonstrate the CAF surface computed

with the SOI emitter and the SNOI emitter only 0.5 km apart. The SIR was simulated

to be 0 dB. This represents a more severe case of CCI where the TDOA for the SOI and

the TDOA for the SNOI are too close to resolve in the CAF surface. Since the signals

are spectrally overlapping, prefiltering cannot be used before the CAF computation in

order to separate the signals. In this case, only FDOA can be unique. However, with the

center frequencies only differing by a small amount, the difference in Doppler shift will

also be small. Therefore, separating the signals based on their FDOAs is not practical.

The TDOA and FDOA measurements from Figure 2.19 correlate with the predicted

SNOI TDOA and FDOA. This can be viewed as a biased estimate of the SOI kinematic

parameters, and it would result in an incorrect geolocation estimate for the SOI emitter

in a real application.

Figure 2.18: CAF surface from BPSK SOI and BPSK SNOI collected at two spatially
separated receivers with an SIR = -10 dB. The signals were emitted from locations that
are 0.5 km apart. The data record length was 2048 samples and the receiver sample
rates were 1 MHz (Left). Top view of CAF surface on the left (Right).
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Figure 2.19: Cross-section plots through the Figure 2.18 CAF surface in both the TDOA
and FDOA dimensions.

As the examples in this section have demonstrated, in scenarios where the SOI is in a

CCI environment the CAF method may not perform to the level needed to get reliable,

unbiased estimates. To overcome the limitations of the CAF method it is necessary to

exploit additional signal properties that enable the co-channel signals to be separated.

Cyclostationarity has been shown to be useful for separating bauded signals, and for

estimating TDOA for a SOI that is corrupted by CCI [9, 10]. In Chapter 4 it will be

demonstrated that it can also be exploited to jointly estimate both TDOA and FDOA

for a SOI in a CCI environment. However, it is informative to first look at another

conventional estimation method that is based on the GCC concept, and which can be

used to iteratively estimate both TDOA and FDOA.

2.4 Hybrid Method

When CCI is not an issue the GCC method has proved to be useful for TDOA

estimation, and it can be computed efficiently using the fast Fourier transform (FFT)
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[1]. It was demonstrated in the examples in Section 2.2.2 that it can also be used

to compute a TDOA vs. time representation that is useful for detecting intermittent

signals or tracking a slowly changing TDOA over long durations. In contrast, the CAF

method can jointly estimate both TDOA and FDOA, making it useful for applications

where there is relative motion between an emitter and one or more of the receivers.

The CAF method outputs a two-dimensional TDOA vs. FDOA surface, called a CAF

surface. The CAF surface can be used for signal detection [4]. After detection, the peak

locations in the CAF surface correspond to the TDOA and FDOA measurements. As

mentioned earlier, the CAF method can be computationally complex, requiring a lot of

computational resources. Therefore, in some applications it may be useful to compromise

the capabilities of the CAF and use a simpler technique that can iteratively compute

both TDOA and FDOA estimates. This section will introduce one such method that is

based around the GCC concept.

The GCC method can be modified into a hybrid method to create a two-dimensional

detection surface similar in some aspects to the CAF surface. Although the hybrid

method is not a true joint estimator like the CAF method, it requires less computational

resources, making it practical for applications where the CAF may be too computation-

ally demanding.

Similar to the GCC SCOT method in Section 2.2, the hybrid method uses a normal-

ized cross spectrum, sometimes called the coherence function, given by

Cyx(f) =
Sxy(f)√
Sx(f)Sy(f)

. (2.39)

For the hybrid method, (2.39) is computed over n = 0, 1, . . . , N − 1 samples of the re-

ceived signal. This computation is repeated as a window, N samples in length, slides

over the data until M frames of N samples have been transformed, each frame represent-
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ing the normalized cross spectrum for a given time window. Similar to the periodogram

method of spectral estimation, each frame overlaps the previous frame in time by 50–

75 percent. This process forms a two-dimensional array of normalized cross spectrum

samples. The rows of the array will be made up of the frequency samples of the cross

spectrum with each sample in a given column representing a frequency sample for a

given time within the collection period. Now, instead of taking the IFFT of each row to

get the TDOA vs. time output described in section 2.2.2, a sub-band of l samples at the

beginning of each row is selected, with l << N . The zero-padded IFFT of this sub-band

is computed giving a cross correlation sequence estimate for the sub-band bandwidth.

This sub-band processing is repeated using overlapping sub bands across each row of

the cross spectrum array. After time-averaging all of the sub-band cross correlation

estimates for each row, the result is a time-averaged cross correlation estimate for sev-

eral sub-band bandwidths. This process has transformed the normalized cross spectrum

array into a frequency vs. lag array. Since a peak in the cross correlation sequences

represents a TDOA measurement, the magnitude of the frequency vs. lag array can be

called the RF vs. TDOA surface without loss of generality. Figure 2.20 displays a simple

diagram depicting the computation of the RF vs. TDOA surface. Like the CAF surface,

this surface is also useful for signal detection.

When computing the RF vs. TDOA surface, both the transform length and the sub-

band bandwidth can be selected. One of the advantages of the RF vs. TDOA surface over

the TDOA vs. time surface is the ability to estimate a signal’s bandwidth in addition to

its time-delay. Obviously, the resolution of this measurement will depend on the selected

sub-band size and the time-window duration of each frame. Once the TDOA for a signal

is measured, the cross correlation sequence sample index corresponding to the detected

TDOA peak can be used to extract a sample from each frame, giving a time-series of

cross correlation sequence samples. Each sample in the time-series will be spaced in
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Figure 2.20: Diagram outlining the RF vs. TDOA computation using the hybrid method.

time based to the frame size and overlap used to create the initial cross spectrum array.

Time overlapping when computing the normalized cross correlation frames will decrease

the time between samples in the time-series, effectively increasing the sample rate. It is

important to note that the sample spacing must be able to support the largest differential

Doppler frequency expected by the collection geometry. Taking the zero-padded Fourier

transform of the time-series will result in a peak that corresponds to the FDOA of the

received signal. Figure 2.21 shows a simple depiction of the time-series extraction and

processing.

The advantage of the modified GCC method, or hybrid method, is that it maintains

the computational simplicity of the conventional GCC method, and therefore can be used

to estimate FDOA while avoiding the computational complexity of the CAF method.

Also, large bandwidths can be processed efficiently and no prior knowledge about the

received signal is necessary in order to get TDOA and FDOA measurements. However,

the method does require relatively high effective-SNR since the received data is broken
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Figure 2.21: Diagram outlining the FDOA estimation processing using the hybrid
method.

up into shorter segments, and spectrally overlapping signals will reduce the detection

surface SNR by a factor equal to (1/2)NE−1, where NE is the number of spectrally

overlapping signals. Also, the examples in the next section will show that the hybrid

method also produces biased estimates under severe CCI conditions. In the next section,

processing examples using the hybrid method are presented.

2.4.1 Hybrid Method Examples

In the following examples the same SOI and SNOI generated for the CAF examples

in Section 2.3.1 are used. Figure 2.22 displays plots of the normalized cross spectrum

computed for two cases: 1) only the SOI is present in the received signal and 2) both

the SOI and a SNOI are present. Notice that in the second case the SNOI represents

CCI since there is spectral overlapping with the SOI.

The RF vs. TDOA surface was computed for the SOI only scenario by following the

processing steps described in the last section. Both a 3-D view and a top view are

displayed in Figure 2.23. It is easy to see from the surface plot that the SOI is at a
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Figure 2.22: Cross spectrum magnitude vs. time representation for SOI used in hybrid
method examples (Left). Cross spectrum vs. time representation for combined SOI and
SNOI used in this section’s hybrid method examples (Right).

center frequency of 246 kHz with a bandwidth of approximately 65 kHz. Figure 2.24

displays cross-section plots in the RF and TDOA dimensions and of the extracted time-

series and corresponding FDOA estimate. In this example, the hybrid method estimates

the TDOA of the SOI to be 64 microseconds and the FDOA to be -849.4 Hz. The true

values for TDOA and FDOA are listed in Table 2.2 to be 70 microseconds and -850 Hz

respectively.

For the next example, both the SOI and an SNOI are present at the receivers.

Again, the RF vs. TDOA surfaces are computed, and TDOA and FDOA estimated for

the SOI. The hybrid method is unable to estimate the SOI TDOA/FDOA parameters

and is able only to estimate the SNOI TDOA/FDOA parameters. This makes sense

given the fact that the SNOI has a wider bandwidth than the SOI and relatively small

segments are used for each transformation in the hybrid method algorithm. This example

demonstrates that the hybrid method suffers from the same limitations as the GCC and

CAF methods.
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Figure 2.23: RF vs. TDOA surface compute using hybrid method from BPSK SOI col-
lected at two spatially separated receivers with an SNR = 20 dB at both receivers. The
data record length was 32,768 samples and the receiver samples rates were 1 MHz (Left).
Top view of detection surface on the left (Right).

Figure 2.24: Cross-section plots through RF vs. TDOA surface in Figure 2.23 in both the
RF and TDOA dimensions (Left). Extracted time-series and FDOA estimate (Right).
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Figure 2.25: RF vs. TDOA surface compute using hybrid method from BPSK SOI and
BPSK SNOI collected at two spatially separated receivers with an SIR = 0 dB at both
receivers. The data record length was 32,768 samples and the receiver samples rates
were 1 MHz (Left). Top view of detection surface on the left (Right)

Figure 2.26: Cross-section plots through RF vs. TDOA surface in Figure 2.25 in both the
RF and TDOA dimensions (Left). Extracted time-series and FDOA estimate (Right).



46

Chapter 3 – CYCLOSTATIONARY THEORY AND PROCESSING

3.1 Co-Channel Interference

Co-channel interference, or CCI, is interference between two or more radio trans-

missions that share the same frequency band. One of the main causes of CCI is over-

crowding of the radio spectrum from multiple emitters using the same spectrum band-

width at the same time.

In today’s wireless communications systems, CCI impairs system capacity and link

quality. For example, in code-division multiple access (CDMA) systems, all users or base

stations are operating in the same frequency band, making CCI an inherent problem,

often called multiple access interference (MAI). A multi-path channel can also introduce

CCI in many modern digital communications systems [18]. For satellite systems, the

asynchronism between transmitters can cause CCI [21]. Usually, designers try hard

to suppress CCI in order to reduce the transmit power required to meet a specified

signal-to-noise ratio, enabling more channels to be transmitted with lower power. In

general, reducing CCI in communications systems leads to capacity increases. Hence,

the design of interference-resistant receivers is important for multiuser communication

systems. In terrestrial cellular systems, site planning and the use of antenna arrays at

the base stations can be used to mitigate CCI. However, for airborne applications the

receiver is usually subject to unavoidable CCI due to its high altitude and wide field of

view. The number of signals within the airborne antenna footprint can be large, making

it very difficult to make measurements for any one SOI. In the previous chapters it was

demonstrated that the conventional methods for TDOA and FDOA estimation can fail,
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or be unreliable when certain CCI conditions occur. This necessitates the use of new

TDOA and FDOA estimation algorithms that are more robust to the effects of CCI.

3.2 Cyclostationary Signals

In this section, a signal property called cyclostationarity is introduced in both the

time and frequency domains. In general, cyclostationary signals have periodically time-

varying second order statistics. In other words, they have a periodic autocorrelation.

This differs from the often assumed stationary signal, which has second order statis-

tics that are constant with time. Many man-made digital communication signals are

cyclostationary due to generation by some periodic process, such as modulation of a

sinusoidal carrier, encoding, framing of data, etc [13].

Autocorrelation can be understood as a measure of how similar a signal is with a time-

shifted version of itself. For a power signal x(t) the definition of the autocorrelation of

x(t) (with the ergodic and stationary assumption) can be expressed in both the continous

time and discrete sampled time by

Rx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x(t)x∗(t− τ) dt (3.1)

Rx(l) = lim
N→∞

1

N

N/2∑
n=−N/2

x(n)x∗(n− l) . (3.2)

The exact value of the autocorrelation will depend on the particular signal x(t). However,

as T becomes longer (3.1) will tend toward the value of the probabilistic definition

Rx(τ) = E [x(t)x∗(t− τ)] , (3.3)
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and to the equivalent infinite time-averaged definition [13]

Rx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
x∗
(
t− τ

2

)
dt . (3.4)

In order to be clear throughout this thesis, the infinite time-averaged (just called time-

averaged from this point forward) definition will be used. It will be noted when proba-

bilistic definitions are used.

The time-averaged mean of a signal is given by

µx(t) = lim
T→∞

1

T

∫ T/2

−T/2
x(t) dt . (3.5)

Of course, in practical applications only a finite sequence from the SOI is available. So,

the calculated mean and autocorrelation will only be estimates of the true mean and

true autocorrelation. However, if a sufficiently long sequence is available, then results

can be obtained that closely approximate the true values.

As mentioned earlier, a stationary, or wide-sense stationary signal is one in which

the mean value and autocorrelation are invariant with time. In contrast, a wide-sense

cyclostationary signal has a stationary autocorrelation sequence that further has the

property that the mean and the autocorrelation sequence are periodic with time. This

can be expressed using the probabilistic properties as

µx(t) = E [x(t)] = E [x(t+mT0)] (3.6)

Rx(τ) = E [x(t)x∗(t− τ)] = E [x(t+mT0)x∗(t+mT0 − τ)] (3.7)

where m is an integer and T0 is some fundamental period of time. For digital com-

munication signals T0 is related to a carrier, chip, or symbol frequency [9, 13]. It is
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worth noting that if the autocorrelation has more than one non-harmonically related

fundamental period, then the signal is said to be polycyclostationary [13].

The exploitation of these periodicities is called cyclostationary processing. The the-

oretical framework behind cyclostationary processing was mostly developed by Gardner

and his colleagues [9, 10, 11, 12, 13]. In order to build the mathematical foundation

needed for Chapter 4, some cyclostationary processing techniques will be introduced in

the next section.

3.3 Processing Cyclostationary Signals

A cyclostationary signal of order n will have additive sine wave components that

give spectral lines after some nth order polynomial transformation (which are nonlinear

operations) [12, 13]. For example, x(t) is cyclostationary with cyclic frequency α if the

Fourier transform of some delay product

y(t) = x(t)x(t−mT0) (3.8)

produces a spectral line at frequency α = 1/T0. This is an example of a second order

transformation, n = 2, and just another way of saying that the autocorrelation is periodic

in time with period T0.

First order cyclostationarity is defined as the mean of a signal having periodicity

with some period T0. Since the mean is periodic, it can be represented using a Fourier

series as

µx =
∞∑

r=−∞
µr exp

(
j2πrt

T0

)
(3.9)

where

µr =
1

T0

∫ T0/2

−T0/2
µx exp

(−j2πrt
T0

)
dt . (3.10)
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The expression in (3.10) is called the time-averaged cyclic mean.

As mentioned above, second order cyclostationarity is similarly defined as having an

autocorrelation function that is periodic with some period T0. This can be mathemati-

cally expressed by

Rx(τ) = Rx(τ +mT0) . (3.11)

Like the periodic mean, the periodic autocorrelation can also be expressed using a Fourier

series by

Rx(τ) =
∞∑

r=−∞
Rα
x(τ) exp

(
j2πrt

T0

)
(3.12)

where the summation can be over all values of α and Rα
x(τ) is defined to be

Rα
x(τ) = lim

T→∞

1

T0

∫ T0/2

−T0/2
Rx(τ) exp(−j2πrαt) dt . (3.13)

Note that Rα
x(τ) will be zero unless α is related to a fundamental periodicity of the

autocorrelation — i.e., α = 1/T0. For example, if the symbol rate of a signal is 1/T0,

then Rα
x(τ) will be nonzero at values α = mT0, where m is an integer. Equation (3.13) is

called the time-averaged cyclic autocorrelation function. The related frequency domain

version is called the spectral correlation density (SCD) and is defined as the Fourier

transform of the time-averaged cyclic autocorrelation function, or

Sαx (f) =
∫ ∞
−∞

Rα
x(τ) exp(−j2πf ′τ) dτ . (3.14)

Transforming the autocorrelation function product into a symmetric delay product

yields

y(t) = x
(
t+

τ

2

)
x∗
(
t− τ

2

)
(3.15)

which, can then be used to form the following time-averaged cyclic autocorrelation func-
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tion that is commonly used in cyclostationary processing [13]

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
x∗
(
t− τ

2

)
exp(−j2παt) dt . (3.16)

Likewise, the cyclic cross correlation function can be expressed as

Rα
xy(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
y∗
(
t− τ

2

)
exp(−j2παt) dt . (3.17)

A useful interpretation of (3.17) is to view it as the common cross correlation of two

functions x(t) and y(t) shifted up and down by a frequency α/2. In other words, it is the

correlation in the time domain between two functions separated in frequency by α. For

digitally modulated signals, the cyclic frequencies are usually related to the baud rate and

the carrier frequency. Spread spectrum signals may have additional cyclic frequencies

present, such as a chip rate in direct sequence spread spectrum, or the hopping frequency

in frequency hopping spread spectrum. For example, a rectangular pulse BPSK signal

with a baud rate of 1/T0 and carrier frequency fc has cyclic frequencies α = ±2fc+m/T0

and α = m/T0 for integers m [11].

The discrete version of the time-averaged cyclic cross correlation function can be

found in [9] to be

Rα
xy(kTs) = lim

N→∞

1

2N + 1

N∑
n=−N

x(nTs + kTs)y
∗(nTs) exp(−j2πα(n+ k/2)Ts) . (3.18)

As mentioned earlier, the Fourier transform of the cyclic correlation function is the

spectral correlation density (SCD). In continuous time the SCD has the form

Sαx (f) =
∫ ∞
−∞

Rα
x(τ) exp(−j2πfτ) dτ . (3.19)
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Notice that the SCD reduces to the conventional power spectral density (PSD) when

α = 0. The SCD at frequency f0 and cyclic frequency α is merely the correlation of two

values of the signal in the frequency domain separated in frequency by α and centered

at frequency f0. Likewise, the SCD computed from the cyclic cross correlation becomes

Sαxy(f) =
∫ ∞
−∞

Rα
xy(τ) exp(−j2πfτ) dτ . (3.20)

The cyclic correlation function and the spectral correlation density are Fourier trans-

form pairs for cyclostationary signals, analogous to the correlation and power spectral

density pairs for stationary signals. An important feature of the second order cyclosta-

tionary statistics is that they contain the phase information about the original signal.

This fact is important when using the alphaCAF algorithm in the next chapter for

estimating TDOA and FDOA.

To illustrate some properties of cyclostationary signals, Figures 3.1 and 3.2 show

plots of the complex SCD magnitude for some common simulated signals including a

BPSK signal similar to the one used for the SOI in chapters of this thesis. Since finite

sequences of the signals were used, resulting in a truncated time-averaged approach,

some estimation artifacts are apparent in the SCD plots.

Figure 3.1 shows the SCD computed for a sine wave with a frequency fc = 100 kHz.

It is easy to see that when α = 0 the normal power spectral density of a sine wave,

which consists of two impulses at ±fc, is produced. The other two peaks correspond to

correlations after frequency shifting the sine functions until the impulses originally at

±f0 are again lined up. This requires a frequency shift of 2fc. This is a trivial example of

the carrier frequency related correlation that appears with many cyclostationary signals.

Another example of a SCD plot is shown in Figure 3.2. The signal used was a

rectangular pulse BPSK waveform, modulated with pseudo-random data, a symbol rate
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Figure 3.1: SCD computed for a sine wave with frequency 100 kHz.

of 10 kHz, and a carrier frequency of 100 kHz. Again, when α = 0, the spectrum in

the frequency dimension is equivalent to the stationary BPSK power spectral density.

For α 6= 0 the plot represents the cross-spectral density of the signal with a frequency

shifted version of itself. Correlations exist at frequency shifts that are equal to integer

multiples of the symbol rate, ±m1/T0. As expected, the largest correlation exists when

the shift is equal to twice the carrier frequency. Examples of the SCD magnitude for

several other communications signals can be found in [11]. It should be clear by now

that the SCD can be used for signal modulation type identification due to the ability to

form unique signatures for different signal types and pulse shapes.

Similar to the GCC method in Chapter 2, the normalized cross spectral density using

the cyclic versions of the autocorrelation and cross correlation functions can be formed.

For example, the normalized cyclic cross spectral density can be expressed as
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Figure 3.2: SCD computed for a BPSK signal with center frequency of 100 kHz and
symbol rate of 10 kHz.

Cα
xy(f) =

Sαxy(f)√
Sαx (f)Sαy (f)

. (3.21)

This is often called the spectral cross coherence function [12]. Several methods in the

literature that exploit cyclostationarity for TDOA estimation are based around use of the

spectral cross-coherence function [9, 10]. In the next section one of these methods will be

introduced, and examples presented on how it is used to obtain TDOA measurements.

3.4 Exploiting Cyclostationarity for TDOA Estimation

Estimating the TDOA for a man-made signal is one of the many applications for

cyclostationary processing, and several good papers in the literature deal with this topic
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[9, 10, 12]. Key to the capability to develop TDOA estimation algorithms using cy-

clostationary techniques is the fact that the cyclic correlation functions retain phase

information about the signals. Therefore, it is possible to exploit phase differences be-

tween signals received at two locations. The signal selectivity that can be achieved by

exploiting cyclostationarity results in algorithms with greater tolerance to additive noise

and interfering signals that overlap temporally, spectrally, and spatially.

Most all of the successful cyclostationary TDOA estimation algorithms are based

around computation of the frequency-smoothed spectral correlation density [9]. The

frequency-smoothed SCD can be computed using

Ŝαx∆f
=

1

M

(M−1)/2∑
v=−(M−1)/2

1

∆t
X̄∆t

(
t, f +

α

2
+ vFs

)
X̄∗∆t

(
t, f − α

2
+ vFs

)
(3.22)

where

X̄∆t(t, f) =
N−1∑
k=0

x (t− kTs) exp (−j2πf(t− kTs)) . (3.23)

Equation (3.22) will be used when computing the spectral correlation densities used in

the TDOA estimation algorithms in order to arrive at stable estimates [13].

Using the signal model in (2.1) and (2.2) where s(t) is a SOI that exhibits cyclosta-

tionarity and D replaces τ as the TDOA, the cyclic correlation functions are computed

to be

Rα
x(τ) = Rα

s (τ) (3.24)

Rα
y (τ) = Rα

s (τ) exp(−j2παD) (3.25)

Rα
yx(τ) = Rα

s (τ −D) exp(−jπαD) (3.26)

where the noise auto and cross terms have been dropped due to the assumption that the

noise terms are not cyclostationary and their cyclic correlations will be zero for α 6= 0.
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Following the form of the GCC method in (2.18) a function can be formed using

the spectral correlation functions called the spectral correlation ratio, or SPECCOR,

function [9, 10], that is defined as

bα(τ)
∆
=

∣∣∣∣∣
∫ (fα+Bs/2)

(fα−Bs/2)

Sαyx(f)

Sαx (f)
exp(j2πft) df

∣∣∣∣∣ (3.27)

where Bs is the signal spectrum bandwidth and α is a signal cyclic frequency. This

function is considered ideal when dealing with complex data [10]. Notice that (3.27) is

similar in form to the GCC method when using a ROTH weighting function. However,

with the SPECCOR function the cyclic spectrums are used instead of the conventional

signal spectrums. As with the GCC method, other weighting functions can be used in

(3.27) and another common definition is

bα(τ)
∆
=

∣∣∣∣∣∣
∫ (fα+Bs/2)

(fα−Bs/2)

Sαyx(f)√
Sαx (f)Sαy (f)

exp(j2πft) df

∣∣∣∣∣∣ , (3.28)

which is sometimes called the cyclic spectral coherence [12]. Notice that (3.28) is similar

to the GCC method using a SCOT weighting function. Using the cyclic correlation

functions in (3.24)–(3.26) the maximum of (3.27) or (3.28)

max{bα(τ)} = D (3.29)

will be a peak at D, and will correspond to the estimated TDOA.

It was introduced in [9] that there are better functions than (3.27) for estimating the

TDOA of cyclostationary signals. Probably the most widely accepted method is called

spectral coherence alignment, or SPECCOA [9, 13]. The SPECCOA function is defined
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as

cα(τ)
∆
=
∣∣∣∣∫ Rα

yx(τ)Rα
x(τ −D)∗ dτ

∣∣∣∣ . (3.30)

3.4.1 Signal Selective TDOA Estimation Examples

Now some examples will be shown from using the SPECCOA method to estimate

TDOA for a cyclostationary signal. Figures 3.3 and 3.4 show plots of the SPECCOA

output computed using the simulated SOI and SNOI signals outlined in Table 2.2 and

the collection geometry in Figure 2.2. The left plot in Figure 3.3 is an example where

only the SOI is present in a AWGN environment with a SNR at both receivers of 3 dB.

The TDOA can be measured from the peak in the plot to be 69 microseconds, which

correlates well to the true value of 70 microseconds considering no interpolation is used.

It should be noted that like the GCC method, in the absence of interpolating, the spacing

between samples in the SPECCOA output is determined by the receiver sample rate and

any zero-padding used before the output transformation. The right plot in Figure 3.3 is

from an example where only the SNOI is present in a AWGN environment with an SNR

of 3 dB. Again, the TDOA is measured from the peak to be 63 microseconds, which

correlates well to the true value of 63.3 microseconds.

As another example, Figure 3.4 illustrates a scenario where both the SOI and SNOI

are present in a AWGN environment and an SIR of 0dB at both receivers. Their re-

spective emitters are located 1 km apart. The left plot shows the output computed for

a cyclic frequency, or α, equal to the symbol rate of the SOI. The right plot shows the

output computed for α equal to the symbol rate of the SNOI. In both cases a sepa-

rate TDOA estimation can be made regardless of the close location of the other emitter

transmitting a spectrally overlapping signal. It is clear that the SPECCOA method is

able to separate the SOI from the SNOI for TDOA estimation by exploiting cyclosta-
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Figure 3.3: SPECCOA output for SOI only with SNR = 3dB. The cyclic frequency
is fixed at the symbol rate of the SOI. The peak corresponds to the estimated TDOA
(Left). SPECCOA output for SNOI only with SNR = 3dB. The cyclic frequency is fixed
at the symbol rate of the SNOI. The peak corresponds to the estimated TDOA (Right).

tionarity. This is an improvement over the conventional GCC method that produced

biased estimations under the same scenario.

The previous examples demonstrate that by exploiting cyclostationarity it is possible

to achieve better estimation capabilities for emitter location applications when severe

CCI can cause conventional methods to fail or be unreliable. In the next Chapter, it will

be shown how it is possible to jointly estimate TDOA and FDOA using cyclostationary

techniques.
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Figure 3.4: SPECCOA output for SOI and SNOI from emitters located 1 km apart
and SIR = 0 dB. The cyclic frequency is fixed at the SOI symbol rate. The peak
corresponds to the TDOA estimate for the SOI while the SNOI has been suppressed
(Left). SPECCOA output for SOI and SNOI with SIR = 0 dB. The cyclic frequency is
fixed at the SNOI symbol rate. The peak corresponds to the TDOA estimate for the
SNOI while the SOI has been suppressed (Right).
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Chapter 4 – SIGNAL SELECTIVE JOINT TDOA AND FDOA

ESTIMATION

4.1 A New Correlation Function

This chapter begins with the development of a new correlation function that exploits

cyclostationarity for joint TDOA and FDOA estimation. The derivation of this new

function will use the same signal model used in the derivations for the CAF method.

This model is expressed again here as

x(t) = s(t) + nx(t) (4.1)

y(t) = Ars(t−D) exp(j2πfdt) + ny(t) . (4.2)

Recall from the last chapter that the CAF can be expressed as

A(τ, f) =
∫ T

0
y(t)x∗(t+ τ) exp(−j2πft) dt . (4.3)

Notice that (4.3) is a correlation function over two parameters, τ and f . If the received

signals are assumed to be cyclostationary, then (4.3) can be modified to be a correlation

function over three parameters, τ , f and α. This will allow signals to be separated using

cyclic frequency for estimating their kinematic parameters. After forming a symmetrical

delay product for each cyclostationary signal, a new correlation function can be written
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as

Aγ(D, f) =
∫ T

0

[∫ T/2

−T/2
y(t+ τ/2)x∗(t− τ/2) exp(−j2πγt) dt

]
[∫ T/2

−T/2
x(t+ τ/2 +D/2)x∗(t− τ/2−D/2) exp(−j2παt) dt

]∗
exp(−j2πfτ) dτ

(4.4)

where γ = α − f is a modified cyclic frequency adjusted for possible Doppler shift on

signal y (see signal model). The notation for (4.4) can be simplified using the cyclic

correlation function definitions to yield

Aγ(D, f) =
∫ T

0
Rγ
yx(τ)Rα

x(τ −D)∗ exp(−j2πfτ) dτ , (4.5)

which is the definition of the new alpha cross ambiguity function, or alphaCAF. The

regular and modified cyclic frequency forms for the time-averaged cyclic correlation

functions can be written as

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x(t+ τ/2)x∗(t− τ/2) exp(−j2παt) dt (4.6)

Rγ
y(τ) = lim

T→∞

1

T

∫ T/2

−T/2
y(t+ τ/2)y∗(t− τ/2) exp(−j2πγt) dt (4.7)

Rγ
yx(τ) = lim

T→∞

1

T

∫ T/2

−T/2
y(t+ τ/2)x∗(t− τ/2) exp(−j2πγt) dt . (4.8)

Using the signal model in (4.1) and (4.2), (4.6)–(4.8) can be expanded to be

Rα
x(τ) = Rα

s (τ) (4.9)

Rγ
y(τ) = |A|2Rγ+2fd

s (τ) exp(−j2π(γ + 2fd)D) (4.10)

Rγ
yx(τ) = ARγ+fd

s (τ −D) exp(−j2π(γ + fd)D) exp(−jπfdτ) . (4.11)

Equation (4.9) will be a maximum when α = 0 or a signal’s cyclic frequency, and when
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τ = 0. Likewise, (4.10) will be a maximum when γ = −2fd and τ = 0, and (4.11) will

be a maximum when γ = −2fd, γ = α − 2fd and τ = D. This can be taken further

using the fact that γ = α− f and deduce that (4.11) will be a maximum when f = fd,

f = 2fd, and f = 2fd − α.

If (4.11) is used with (4.5) the new correlation function in (4.5) can be written to be

Aγ(τ, f) = A
∫ T

0
Rγ+fd
s (τ −D)Rα

s (τ) exp(−jπ(γ + fd)D) exp(−jπ(fd− f)τ) dτ . (4.12)

When α is at a signal’s cyclic frequency, (4.12) is maximum when τ = D and f = fd.

Notice that it is a correlation of a cyclic cross correlation sequence with a frequency

shifted cyclic autocorrelation sequence. Also, notice that (4.5) is similar in form to

the SPECCOA function introduced in Section 3.4. However, (4.5) is a function of two

dimensions for a fixed α, but the SPECCOA function is only a function of one dimension

for a fixed α.

Since it is sometimes easier to work with the SCD instead of the cyclic correlation

functions, it is useful to create a frequency domain version of (4.5). The spectral corre-

lation functions can be found by taking the Fourier transform of the cyclic correlation

functions as follows

Sαx (f
′
) =

∫ ∞
−∞

Rα
x(τ) exp(−j2πf ′τ) dτ (4.13)

Sγy (f
′
) =

∫ ∞
−∞

Rγ
y(τ) exp(−j2πf ′τ) dτ (4.14)

Sγyx(f
′
) =

∫ ∞
−∞

Rγ
yx(τ) exp(−j2πf ′τ) dτ (4.15)

giving
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Sαx (f
′
) = Sαs (f

′
) (4.16)

Sγy (f
′
) = |A|2Sγ+2fd

s (f
′
) exp(−j2π(γ + 2fd)D) (4.17)

Sγyx(f
′
) = ASγ+fd

s (f
′
+ fd/2) exp(−j2π(γ + fd)D) exp(−jπDf ′) . (4.18)

Now (4.5) can be expressed in the frequency domain using (4.17)–(4.19). The frequency

domain version of alphaCAF becomes

W γ(D, f) = A
∫ T

0
Sγyx(f

′
)Sαx (f

′
+ f/2) exp(−j2πτ(f

′
+ α/2)) df

′
. (4.19)

It follows from (4.17) and (4.19) that W γ(τ, f) can be expanded to be

W γ(D, f) = A
∫ T

0
Sγ+fd
s (f

′
+fd/2)Sαs (f

′
) exp(−j2π(γ+fd)D) exp(−j2πτ(f

′
+α/2)) df

′

(4.20)

and will be maximum when f = fd and τ = D and α is equal to a signal’s cyclic

frequency. This is exactly the type of correlation function needed to overcome the

problems encountered with the conventional methods introduced in Chapter 2.

For both the time domain alphaCAF in (4.5) and frequency domain alphaCAF in

(4.19), frequency-smoothing and time-averaging can be used when forming the cyclic cor-

relation functions and/or spectral correlation functions. However, frequency-smoothing

has a low-pass filtering effect and can decrease the amplitude of the alphaCAF output

at large TDOA values.

The alphaCAF equation in (4.5) provides a two dimensional output for each cyclic

frequency chosen for the computation. However, computing the output for many cyclic

frequencies comes with the a high computational cost. Clearly, the alphaCAF function
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is best suited for applications where the cyclic frequencies of interest are known a priori.

In Chapter 5 the actual benefits of using (4.5) over the conventional CAF method will

be illustrated.

4.1.1 alphaCAF Examples

In this section of the thesis, some examples from the new alphaCAF correlation

function developed in Section 4.1 are given. All of the figures for this section are located

at the end of this section. The first example uses the SOI from Table 2.2 and no

interference. The SNR at both receivers is 5 dB. The collection geometry is once again

the same as that depicted in Figure 2.2. The collection length is 2048 microseconds

long, or 2048 samples at a 1 MHz sample rate. Figure 4.1 displays an alphaCAF surface

generated using the magnitude output from (4.5). Both the 3-D view and the 2-D

top view are provided for comparison with the examples in Chapter 2. Just like the

conventional CAF, the alphaCAF generates a peak at the estimated TDOA and FDOA

values. The peak correlates well to the predicted TDOA (70 microseconds) and the

predicted FDOA (850 Hz) values. Figure 4.2 shows the cross-section plots through the

SOI peak in both the TDOA and FDOA dimensions.

The next example uses only the SNOI from Table 2.2 with no SOI present. The SNR

at both receivers is 5 dB. Figure 4.3 displays the alphaCAF surface computed using the

magnitude output from (4.5). Again, both the 3-D view and the top view are provided.

A peak is clearly visible at the predicted SNOI TDOA (63.3 microseconds) and predicted

FDOA (845 Hz) values. The values are easier to see in the cross-section plots in Figure

4.4.

The next example uses both the SOI and SNOI from Table 2.2 with an SIR of 0 dB

at both receivers. The SOI and SNOI emitters are 1 km apart. Figure 4.5 displays the
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alphaCAF surface computed with the cyclic frequency fixed at the symbol rate of the

SOI (16/256fs). The receiver sample rates are 1 MHz. Both the 3-D view and the top

view are provided, with the cross-section plots displayed in Figure 4.6. A single peak

is clearly visible at the predicted TDOA and FDOA values for the SOI even though

the SNOI overlaps with it spectrally and spatially. Unlike the conventional CAF, the

alphaCAF has separated the peak for the SOI from the peak for the SNOI by exploiting

their different symbol rates.

Figure 4.7 displays an alphaCAF surface computed with the cyclic frequency fixed

at the symbol rate of the SNOI (26/256fs). In this case the peak for the SNOI has been

separated from the peak for the SOI. Using the alphaCAF method a unique detection

surface can be generated for any unique cyclic frequency. If it was computed over many

cyclic frequencies, a three-dimensional detection cube could be formed for estimating

TDOA, FDOA, and cyclic frequency. Figure 4.8 displays cross-section plots through the

SNOI peak in Figure 4.7 in both the TDOA and FDOA dimensions.

In order to provide an even more obvious illustration of the separation capability of

the alphaCAF, Figures 4.9–4.11 show surface plot top views from a CAF computation

together with an alphaCAF computation using a co-channel scenario. In this example

the SOI and SNOI emitters are separated spatially by a large distance so that their

respective TDOAs and FDOAs are clearly resolvable in the conventional CAF surface.

Figure 4.9 shows the conventional CAF output while Figure 4.10 and 4.11 show the

alphaCAF output with the cyclic frequency fixed at the symbol rate for the SOI and

SNOI respectively. This clearly demonstrates that the alphaCAF method can separate

the signals according to their unique cyclic frequencies.
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Figure 4.1: alphaCAF surface computed from SOI only with SNR = 5 dB. Cyclic fre-
quency was fixed at the SOI symbol rate (16/256fs). The data record length is 2048
samples with a sample rate of 1 MHz (Left). Top view of surface to the left showing
peak location corresponding to TDOA and FDOA estimate (Right).

Figure 4.2: Cross-section plots through surface in Figure 4.1 in both the TDOA and
FDOA dimensions.
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Figure 4.3: alphaCAF surface computed from SNOI only with SNR = 5 dB. Cyclic
frequency was fixed at the SOI symbol rate (26/256fs). The data record length is 2048
samples with a sample rate of 1 MHz (Left). Top view of surface to the left (Right).

Figure 4.4: Cross-section plots through surface in Figure 4.3 in both the TDOA and
FDOA dimensions.
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Figure 4.5: alphaCAF surface computed from SOI and SNOI with the cyclic freqeuncy
fixed at the SOI symbol rate in order to separate the SOI estimate. The SIR = 0 dB for
both receivers. The data record length was 2048 samples with a sample rate of 1 MHz
(Left). Top view of surface to the left (Right).

Figure 4.6: Cross-section plots through surface in Figure 4.5 in both the TDOA and
FDOA dimensions.
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Figure 4.7: alphaCAF surface computed from SOI and SNOI with the cyclic freqeuncy
fixed at the SNOI symbol rate in order to separate the SNOI estimate. The SIR = 0
dB for both receivers. The data record length was 2048 samples with a sample rate of
1 MHz (Left). Top view of surface to the left (Right).

Figure 4.8: Cross-section plots through surface in Figure 4.7 in both the TDOA and
FDOA dimensions.
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Figure 4.9: Conventional CAF output computed for spatially separated SOI and SNOI.
The SIR = 0 dB for both receivers. The data record length is 2048 samples with a
sample rate of 1 MHz (Left). Top view of surface on the left (Right).

Figure 4.10: alphaCAF output computed for spatially separated SOI and SNOI. The
SIR = 0 dB for both receivers. The cyclic frequency was fixed at the SOI symbol rate
in order to separate the SOI estimate. The data record length is 2048 samples with a
sample rate of 1 MHz (Left). Top view of surface on the left (Right).
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Figure 4.11: alphaCAF output computed for spatially separated SOI and SNOI. The
SIR = 0 dB for both receivers. The cyclic frequency was fixed at the SNOI symbol rate
in order to separate the SOI estimate. The data record length is 2048 samples with a
sample rate of 1 MHz (Left). Top view of surface on the left (Right).
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4.2 Maximum Likelihood Approach to Co-Channel Signal Separation

In this section the an estimator for joint TDOA, FDOA and cyclic frequency (α)

estimation will be derived using a more complete signal model and a maximum likelihood

(ML) approach. This section is motivated by the work presented in [14] that does not

consider CCI in the signal model and does not result in a practical estimator. In this

derivation the effects from CCI on the estimation process are considered. Therefore, a

signal model that more accurately describes a CCI environment is used. Throughout

the derivation, several simplifying assumptions will be made in order to justify the

alphaCAF method as a practical estimator. In general, the goal is to arrive at the

alphaCAF estimator using the ML approach [17]. In this section a slightly simplified

version of the signal model introduced in (2.5) and (2.6) will be used. This simplified

signal model can be expressed as

x1(n) = s(n) +
p∑
i=1

si(n) + w1(n) (4.21)

x2(n) = s(n−D) exp(j2πfdn) +
p∑
i=1

si(n−Di) exp(j2πfdin) + w2(n) (4.22)

where the wn terms represent the noise at each receiver, and the relative amplitude and

phase mismatches between receivers have been ignored for mathematical convenience.

However, the model does take into account CCI signals with unique delays and Doppler

shifts that are received by both receivers.

If N signal samples are collected by each receiver then a vector signal model can be

developed from (4.21) and (4.22) to be

 x1

x2

 =

 sn

sd

+

 cn

cd

+

 w1

w2

 (4.23)



73

where,

x1 = [x1(0) · · ·x1(N − 1)]T

x2 = [x2(0) · · ·x2(N − 1)]T

sn = [sn(0) · · · sn(N − 1)]T

sd = [sd(0) · · · sd(N − 1)]T

cn = [cn(0) · · · cn(N − 1)]T

cd = [cd(0) · · · cd(N − 1)]T

wi = [wi(0) · · ·wi(N − 1)]T

(4.24)

and [•]T denotes the transpose operation, and

sn = s(n) (4.25)

sd = s(n−D) exp(j2πfdn) (4.26)

cn =
p∑
i=0

si(n) (4.27)

cd =
p∑
i=0

si(n−D) exp(j2πfdin) . (4.28)

The vector model in (4.23) can be written in a more compact form as

x = s + c + w (4.29)

where each term represents a column vector that is 2N samples in length.

The goal is to estimate D, fd and α. Let’s assume the noise environment consists of

only zero-mean white Gaussian noise. Therefore, the noise terms are uncorrelated with

the signal and interference terms. Following the standard ML approach [17], the noise is

modeled with a complex multivariate Gaussian distribution that depends on the signal

parameters θ = [D, fd]. Letting q = s + c the probability distribution function (pdf)
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has the form

p(w; θ) =
1

(2π)2N |R|
exp

[
−(x− q)∗TR−1(x− q)

]
. (4.30)

Since the noise is zero-mean white Gaussian, the following definitions

R = NoI2N×2N (4.31)

|R| = N2N
o (4.32)

R−1 =
1

No

I2N×2N (4.33)

can be used with (4.30) to arrive at

p(w; θ) =
1

(2πNo)2N
exp

[
−(x− q)∗T (x− q)

No

]
(4.34)

where |R| in (4.32) represents the determinant of the correlation matrix. After dropping

the constant out front and expanding the product in the exponential, (4.34) becomes

p(w; θ) ∝ exp

[
−x∗Tx + x∗Tq + q∗Tx− q∗Tq

No

]
. (4.35)

In order to find the ML estimator p(w; θ) is maximized with respect to the param-

eters of interest. Expanding the exponential in (4.35) into the product of individual

exponential terms yields

p(w; θ) ∝ exp

(
−x∗Tx

No

)
exp

(
x∗Tq

No

)
exp

(
q∗Tx

No

)
exp

(
−q∗Tq

No

)
. (4.36)

Using the Taylor series expansion exp(x) = 1 +x+ x2

2!
+ · · · with each of the exponential
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terms in (4.36) yields

p(w; θ) ∝


(
1− x∗Tx

No
+ (x∗Tx)2

2N2
o

) (
1 + x∗Tq

No
+ (x∗Tq)2

2N2
o

)
×
(
1 + q∗Tx

No
+ (q∗Tx)2

2N2
o

) (
1− q∗Tq

No
+ (q∗Tq)2

2N2
o

)
 . (4.37)

After multiplying out the terms in (4.37) and dropping any terms higher than 4th order,

the result is

p(w; θ) ∝



1− q∗Tq

No

+
(q∗Tq)2

2N2
o

+

q∗Tx

No

− q∗Txq∗Tq

N2
o

+
(q∗Tx)2

2N2
o

+

x∗Tq

No

− x∗Tqq∗Tq

N2
o

+
x∗Tqq∗Tx

N2
o

+

(x∗Tq)2

2N2
o

− x∗Tx

No

+
x∗Txq∗Tq

N2
o

−

x∗Txq∗Tx

N2
o

− x∗Txx∗Tq

N2
o

+
(x∗Tx)2

2N2
o



. (4.38)

For relatively long collection times, the terms in (4.38) with only x∗Tx or q∗Tq inner

vector products will only contribute average power to the output. These terms will not

depend on the parameters of interest, fd and D. Therefore, they can be dropped. Also,

since the assumption is made that the signals being collected are man-made, but not

necessarily cyclostationary, it is safe to assume that since the expected value of most

digital communications signals is zero, the expected value of any term with an odd power

of SOI terms will go to zero — i.e. s(n) terms, because they will average to zero over

the collection time. These two simplifications allow (4.38) to be written as

p(w; θ) ∝ (q∗Tx)2

2N2
o

+
x∗Tqq∗Tx

N2
o

+
x∗Tqq∗Tx

N2
o

+
(x∗Tq)2

2N2
o

. (4.39)

The four terms in (4.39) make up two sets of conjugate pairs and can be reduced to the
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expression

p(w; θ) ∝ 2Re

{
(x∗Tq)2

2N2
o

+
x∗Txq∗Tq

N2
o

}
. (4.40)

Now, the terms in (4.40) can be expanded by substituting back in q = s + c. Starting

with only expanding the numerator of the first term yields

(x∗Tq)2 = x∗T sx∗T s + x∗Tcx∗T s + x∗T sx∗Tc + x∗Tcx∗Tc . (4.41)

Taking the first term of (4.41) and expanding yields

x∗T sx∗T s =

N−1∑
n1=0

(x∗1(n1)sn(n1) + x∗2(n1)sd(n1)

N−1∑
n2=0

(x∗1(n2)sn(n2) + x∗2(n2)sd(n2)

 ,

(4.42)

which is further expanded into four sums as

x∗T sx∗T s =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)x∗2(n2)sn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sd(n1)x∗2(n2)sn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sd(n1)x∗2(n2)sd(n2)



. (4.43)

The first sum in (4.43) does not depend on the parameters of interest so it can be

disregarded. Following this pattern by expanding the rest of the terms in (4.41) and

eliminating any sums that do not depend on the parameters of interest leaves the indi-

vidual terms
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x∗Tcx∗T s =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗1(n2)sn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗2(n2)sd(n2)


(4.44)

x∗T sx∗Tc =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)x∗2(n2)cd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)x∗2(n2)cn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)x∗2(n2)cd(n2)


(4.45)

x∗Tcx∗Tc =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)x∗2(n2)cd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗1(n2)cn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cd(n1)x∗2(n2)cd(n2)


. (4.46)

Doing the same thing for the numerator of the second term in (4.40), x∗Tqq∗Tx, yields

x∗T ss∗Tx =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)s∗d(n2)x2(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)s∗n(n2)x1(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)s∗d(n2)x2(n2)


(4.47)

x∗T sc∗Tx =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)c∗d(n2)x2(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)c∗n(n2)x1(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)c∗d(n2)x2(n2)


(4.48)
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x∗Tcs∗Tx =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)c∗d(n2)x2(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)c∗n(n2)x1(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)c∗d(n2)x2(n2)


(4.49)

x∗Tcc∗Tx =



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)s∗d(n2)x2(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)s∗n(n2)x2(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)s∗d(n2)x2(n2)


. (4.50)

After combining all of these terms the result is a large expression of twenty four terms.

Obviously, this will be a very difficult expression to work with. Fortunately, some further

simplifications can be made by combining similar term pairs. For example, the terms

with x∗1(n1)sn(n1)x∗2(n2)sd(n2) and x∗2(n1)sd(n1)x∗1(n2)sn(n2) are a similar pair. After

this reduction, the total expression becomes the following expression of fourteen terms
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p(w; θ) ∝ Re

N2
o



N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗1(n2)sn(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗2(n2)sd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)x∗2(n2)cd(n2) +

N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)x∗2(n2)cd(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)s∗d(n2)x2(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)s∗d(n2)x2(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)sn(n1)c∗d(n2)x2(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)c∗n(n2)x1(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)sd(n1)c∗d(n2)x2(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗1(n1)cn(n1)c∗d(n2)x2(n2) +

2
N−1∑
n1=0

N−1∑
n2=0

x∗2(n1)cd(n1)c∗d(n2)x2(n2)



. (4.51)

Assuming basebanded signals are used and the sample rate for the collection system is

significantly greater than the signal bandwidth, (4.51) can be expressed using continuous

time notation without loss of generality. For ease of notation lets start by looking only
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at the first term in (4.51) after converting to continuous time:

∫ T

0

∫ T

0
x∗1(t1)sn(t1)x∗2(t2)sd(t2) dt1 dt2 . (4.52)

Taking the expectation and treating the receiver terms as non-random variables, and

the signal terms as random variables, (4.52) can be written as

∫ T

0

∫ T

0
x∗1(t1)x∗2(t2)Rsns∗d

(t1, t2) dt1 dt2 (4.53)

where the definition

Rab(t1, t2)
4
= E{a(t1), b∗(t2)} (4.54)

has been used. Next, it is assumed that the co-channel interference and the signal of

interest terms are uncorrelated since they are presumed to not share the same cyclic

frequencies. Note that this assumption is only useful when exploiting cyclostationary

processing. However, it is convenient to eliminate correlation terms here with the knowl-

edge that cyclic correlation functions will be substituted later. With this assumption,

terms 3, 4, 5, 10, 11 and 12 can be eliminated from (4.51). Now, using continuous time

notation the following eight terms remain
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p(w; θ) ∝ Re

N2
o



∫ T

0

∫ T

0
x∗1(t1)x∗2(t2)Rsns∗d

(t1, t2) dt1 dt2 +∫ T

0

∫ T

0
x∗2(t1)x∗2(t2)Rsds

∗
d
(t1, t2) dt1 dt2 +∫ T

0

∫ T

0
x∗1(t1)x∗2(t2)Rcnc∗d

(t1, t2) dt1 dt2 +∫ T

0

∫ T

0
x∗2(t1)x∗2(t2)Rcdc

∗
d
(t1, t2) dt1 dt2 +

2
∫ T

0

∫ T

0
x∗1(t1)x2(t2)Rsnsd(t1, t2) dt1 dt2 +

2
∫ T

0

∫ T

0
x∗2(t1)x2(t2)Rsdsd(t1, t2) dt1 dt2 +

2
∫ T

0

∫ T

0
x∗1(t1)x2(t2)Rcncd(t1, t2) dt1 dt2 +

2
∫ T

0

∫ T

0
x∗2(t1)x2(t2)Rcdcd(t1, t2) dt1 dt2



. (4.55)

Using the definition from Gardner [13] that

R̂α
xT yT

4
=
∫ T

0
xT (t+ τ/2)y∗T (t− τ/2) exp(−j2παt) dt (4.56)

where

xT = u(t− τ/2)x(t)

yT = u(t− τ/2)y(t)
(4.57)

u(t) =


1 |t| < T/2

0 otherwise
(4.58)

and also from [13] that

Rab(t1, t2) =
∑
α

Rα
ab(t1 − t2) exp(jπα(t1 + t2)) , (4.59)

the following form is arrived at for the first term in (4.55)

∫ T

0

∫ T

0
x∗1(t1)x∗2(t2)Rsns∗d

dt1 dt2 =∫ T
0

∫ T
0 x∗1(t1)x∗2(t2)

∑
αR

α
sns∗d

(t1 − t2) exp(jπα(t1 + t2) dt1 dt2 .
(4.60)
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Substituting in (4.56) and working out some basic tedious algebra enables (4.60) to be

expressed as

∫ T

0

∫ T

0
x∗1(t1)x∗2(t2)Rsns∗d

dt1 dt2 =
∑
α

∫ T

0
R̂α
x∗1x2

(τ)Rα
s∗nsd

(τ)∗ dτ . (4.61)

The total expression for the pdf in (4.55) can now be written as

p(w; θ) ∝ Re

N2
o



∑
α

∫ T

0
R̂α
x∗1x2

(τ)Rα
s∗nsd

(τ)∗ dτ +

∑
α

∫ T

0
R̂α
x∗2x2

(τ)Rα
s∗
d
sd

(τ)∗ dτ +

∑
α

∫ T

0
R̂α
x∗1x2

(τ)Rα
c∗ncd

(τ)∗ dτ +

∑
α

∫ T

0
R̂α
x∗2x2

(τ)Rα
c∗ncd

(τ)∗ dτ +

2
∑
β

∫ T

0
R̂β
x2x1

(τ)Rβ
snsd

(τ)∗ dτ +

2
∑
β

∫ T

0
R̂β
x2x2

(τ)Rβ
sdsd

(τ)∗ dτ +

2
∑
β

∫ T

0
R̂β
x2x1

(τ)Rβ
cncd

(τ)∗ dτ +

2
∑
β

∫ T

0
R̂β
x2x2

(τ)Rβ
cdcd

(τ)∗ dτ



(4.62)

where α and β are the conjugate and non conjugate cyclic frequencies [13].

Next, sn, sd, cn, and cd are substituted into (4.62) to get it in terms of the re-

ceived signals x1(t) and x2(t). In order to avoid dealing with the summations in (4.27)

and (4.28) it is assumed that only one SNOI is present. With these substitutions and
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assumptions the correlation function in (4.62) becomes

p(w; θ) ∝ Re

N2
o



∑
α

∫ T

0
R̂α
x∗1x2

(τ)Rα+fd
s∗nsn

(τ −D)∗ exp(−jπ(α + fd)D) exp(−jπfdτ) dτ +

∑
α

∫ T

0
R̂α
x∗2x2

(τ)Rα+2fd
s∗nsn

(τ)∗ exp(−jπ(α + 2fd)D) exp(−j2πfdτ) dτ +

∑
α

∫ T

0
R̂α
x∗1x2

(τ)Rα+fd
s∗s (τ −D)∗ exp(−jπ(α + fd)D) exp(−jπfdτ) dτ +

∑
α

∫ T

0
R̂α
x∗2x2

(τ)Rα+fd
s∗s (τ −D)∗ exp(−jπ(α + fd)D) exp(−jπfdτ) dτ +

2
∑
β

∫ T

0
R̂β
x2x1

(τ)Rβ+fd
snsn (τ −D)∗ exp(−jπ(β + fd)D) exp(jπfdτ) dτ +

2
∑
β

∫ T

0
R̂β
x2x2

(τ)Rβ+2fd
snsn (τ)∗ exp(−jπ(β + 2fd)D) exp(−j2πfdτ) dτ +

2
∑
β

∫ T

0
R̂β
x2x1

(τ)Rβ+fd
ss (τ −D)∗ exp(−jπ(β + fd)D) exp(jπfdτ) dτ +

2
∑
β

∫ T

0
R̂β
x2x2

(τ)Rβ+2fd
ss (τ)∗ exp(−jπ(β + 2fd)D) exp(−j2πfdτ) dτ


(4.63)

where the complete expression represents an ideal estimator because it requires knowl-

edge of the SOI and SNOI for the computation of the cyclic correlation functions. Since

this knowledge is generally not available in practice, the cyclic correlation functions com-

puted using the signal data x1(t) are substituted for the ideal cyclic correlation functions

of the known SOI. After dropping conjugate terms, replacing x1(t) or x2(t) with x and

y respectively, keeping only one term from similar term pairs and keeping only terms

that depend only upon the two parameters of interest, (4.63) becomes

p(w; θ) ∝ 2Re

N2
o

{ ∑
α

∫ T

0
R̂β
yx(τ)Rβ+fd

x (τ −D)∗ exp(−jπ(β + fd)D) exp(−jπfdτ) dτ

}
.

(4.64)

Notice that this is very similar to the function derived in Section 4.1. In fact, after

shifting the limits of integration and letting fd = f and β = α− f , (4.64) computed at
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a fixed cyclic frequency reduces to

p(w; θ) ∝ K
∫ T/2

−T/2
R̂α−f
yx (τ)Rα

x(τ −D)∗ exp(−j2παD) exp(−jπfτ) dτ . (4.65)

which is almost identical to the alphaCAF function derived in Section 4.1 except for the

constant phase term, which can be moved out of the integral into the complex amplitude

term, yielding

p(w; θ) ∝ K
′
∫ T/2

−T/2
R̂α−f
yx (τ)Rα

x(τ −D)∗ exp(−j2πfτ) dτ . (4.66)

This suggests that the alphaCAF function can be arrived at using the ML approach

and several simplifying assumptions. In the next chapter it will be determined if the

alphaCAF estimator approaches optimal performance for large data records and high

SNR scenarios. Specifically, it will be explored experimentally whether or not the al-

phaCAF estimator is a less biased estimator than the CAF when CCI and closely spaced

emitters are a concern.
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Chapter 5 – ALGORITHM PERFORMANCE — ILLUSTRATIVE

EXAMPLES

5.1 Test Environments

To demonstrate the tolerance to co-channel interference and the separation capabili-

ties exhibited by the new alphaCAF method, two simulated collection test environments

are considered. The two test environments cover scenarios of narrow-band interference

to wide-band interference and single and multiple signal sources. In both environments

there is uncorrelated zero-mean Gaussian noise added to the received signals. Several

SNR conditions are considered for each test environment. In this sense, the analysis

is similar to the analysis in [10] used to test cyclostationary TDOA only estimation

algorithms. A similar format is used here so that comparisons to the analysis in the

literature are possible. In all cases the SOI is the same signal used throughout the previ-

ous chapters, with parameters listed in Table 2.2. The sample rate for both receivers is

fs =1 MHz. The data record length is fixed for all the following examples to be 2048Ts.

For the qualitative analysis, interpolation is not used and therefore the nearest sample

quantization error in the measurements is expected to be on the order of 1 microsecond

for the TDOA and 488 Hz for the FDOA. For the quantitative analysis a simple polyno-

mial interpolation method is used to get more precise estimates. Each test environment

is discussed in detail in the following subsections.
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5.1.1 Environment A: Wide-band Co-Channel Interference

In this environment the interference consists of two BPSK modulated signals with

carrier frequencies of f1 = 0.218fs and f2 = 0.281fs and bandwidths of B1 = 0.102fs and

B2 = 0.125fs respectively. The location of the first interference emitter is approximately

1 km away from the SOI emitter. The location of the second interference emitter is only

0.5 km away from the SOI emitter. The predicted TDOA for the SOI is 70 microseconds.

The interference signals have a predicted TDOA of 63 microseconds and 66 microseconds

respectively. The predicted FDOA for the SOI is -850 Hz and the predicted FDOA for

the interference signals are -845 Hz and -843 Hz respectively. The spatial locations of the

emitters are chosen such that separate delay/Doppler estimates for each emitter should

not be possible using the conventional CAF method given the signal bandwidths and

the fixed collection time.

5.1.2 Environment B: Narrow-band Co-Channel Interference

In this test environment, the interference consists of one BPSK modulated signal

with a carrier frequency of f1 = 0.242fs and a bandwidth of B1 = 0.031fs. Note that

the interfering signal spectrum lies completely within the SOI spectrum and is consid-

ered a narrow-band interferer. The location of the narrow-band interference emitter is

approximately 0.5 km away from the SOI emitter. The predicted TDOA for the SOI is

70 microseconds and the predicted TDOA for the interference signal is 66 microseconds.

The predicted FDOA for the SOI is -850 Hz and the predicted FDOA for the interference

signal is -845 Hz. Again, th emitter locations were chosen so that separate estimates for

the SOI emitter and SNOI emitter should not be possible using the conventional CAF

method.
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5.2 Qualitative Assessment of Estimator Bias

In order to properly assess the increased resolution performance of the new al-

phaCAF method, it is compared to the conventional CAF method using the test envi-

ronments described above. In Figure 5.1 the conventional CAF output is displayed for

Test Environment A and a SIR of 0 dB. Although there are three co-channel signals

received, the CAF method is not able to produce separate peaks for each signal. The

cross-section plot for the TDOA dimension shows a double peak. One side of the double

peak is at the predicted TDOA for one of the interfering signals (66 microseconds). The

other peak is located at a larger TDOA value than the actual SOI TDOA. It is not

possible to make out three separate peaks even though it is known that there are actu-

ally three emitters involved. Notice that an estimate of the SOI TDOA in this scenario

is biased, which will result in an incorrect location estimate if this TDOA is used to

generate x,y location parameters.

Figure 5.1: Top view of conventional CAF output for test environment A, SIR = 0 dB
(Left). Cross-section plots from surface plot on the left in both the TDOA and FDOA
dimension (Right).

In contrast, the output from the alphaCAF (computed at a cyclic frequency equal to
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the SOI symbol rate of 62,500 Hz) displayed in Figure 5.2 is able to uniquely separate

the peak for the SOI and provide an accurate TDOA estimate of 70 microseconds and

FDOA estimate of -849 Hz. It was shown in the last chapter that the peaks for the

interfering signals can also be uniquely separated. Notice in the alphaCAF cross-section

plots that the TDOA and FDOA measurements for the SOI match the actual values

within the expected error range. It will be quantitatively demonstrated in the next

section that unlike the conventional CAF, the alphaCAF estimates are unbiased even

though the co-channel emitters are located spatially close together. Figures 5.3 and 5.4

show the same analysis using Test Environment A, but with a lower SIR of -6 dB at

both receivers. Even at the lower SIR accurate estimates are produced.

Figure 5.2: Top view of new alphaCAF output for test environment A, SIR = 0 dB
(Left). Cross-section plots from surface plot on the left in both the TDOA and FDOA
dimension (Right).

Now, the same analysis will be illustrated for Test Environment B. As mentioned

earlier, this is a narrow-band case where the interfering signal bandwidth is completely

inside the SOI bandwidth. In Figure 5.5 the conventional CAF output is displayed

for Test Environment B with a SIR of 0 dB. Since there are two co-channel signals
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Figure 5.3: Top view of conventional CAF output for test environment A, SIR = -6 dB
(Left). Cross-section plots from surface plot on the left in both the TDOA and FDOA
dimension (Right).

Figure 5.4: Top view of new alphaCAF output for test environment A, SIR = -6 dB
(Left). Cross-section plots from surface plot on the left in both the TDOA and FDOA
dimension (Right).

received, two peaks are expected. However, the CAF method is again not capable of

distinguishing the TDOA and FDOA parameters for both the SOI and SNOI. Looking

at the cross-section plots only one peak can be seen. The peak location is closer to the
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predicted TDOA for the interfering signal (66 microseconds) than it is to the actual

SOI TDOA. In other words, the estimate for the SOI TDOA is biased toward the SNOI

TDOA. Therefore, it is not possible to make an accurate measurement for the SOI due

to the narrow-band CCI and close interfering emitter.

In contrast, the output from the alphaCAF method displayed in Figure 5.6 is again

able to uniquely separate the peak corresponding to the SOI and provide a TDOA

estimate of 70 Microseconds and an FDOA estimate of -849 Hz. By using the alphaCAF

method it is possible to get a TDOA and FDOA measurement for a SOI even with the

co-channel interference from a spatially close emitter. Figures 5.7 and 5.8, show the same

analysis using Test Environment B, but with a lower SIR of -6 dB at both receivers.

Again, accurate estimates are produced even at the lower SIR.

Figure 5.5: Conventional CAF output for test environment B, SIR = 0 dB (Left). Top
view of surface on the left (Right).



91

Figure 5.6: New alphaCAF output for test environment B, SINR = 0 dB (Left). Top
view of surface on the left (Right).

Figure 5.7: Conventional CAF output for test environment B, SINR = -6 dB (Left).
Top view of surface on the left (Right).
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Figure 5.8: New alphaCAF output for test environment B, SINR = -6 dB (Left). Top
view of surface on the left (Right).
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5.3 Quantitative Assessment of Estimator Bias

To quantitatively assess the estimate bias when using the alphaCAF method, the

same simulated signals and test environments used in the previous section are considered

in this section. The goal of this section is to experimentally determine if the alphaCAF

method produces unbiased estimates when the CAF method does not. The conven-

tional CAF estimator is a maximum likelihood estimator if only a single SOI is present

in AWGN [7], and therefore an unbiased estimator for large enough data records [17].

However, it has been shown in this thesis that the CAF method produces biased esti-

mates when multiple co-channel signals are received that originate from spatially close

emitters. This was demonstrated qualitatively in the last section using both wide-band

and narrow-band CCI.

In order to quantitatively explore the question about the alphaCAF estimator’s ca-

pability to produce unbiased estimates a multi-trial, or Monte Carlo analysis for several

collection lengths and different SNR conditions was conducted. This approach was cho-

sen due to the difficult and intractable appearance of proving this fact analytically. To

simplify the analysis FDOA was fixed and only TDOA estimates were considered. At

this stage it will be assumed that the bias behavior in the TDOA dimension is represen-

tative of the FDOA dimension. Analysis of the full three-dimensional bias performance

of the alphaCAF estimator will be left for future research efforts.

For each collection length multiple independent data records were simulated. For

each data record a CAF surface and a alphaCAF surface were computed. Interpolation

was used on each surface to get more precise measurements. Next, peak detection

was performed as an estimate of TDOA. Using the estimates for all trials for a given

collection length a histogram was computed along with the mean and variance of the

estimates. The mean was then compared to the true TDOA value predicted from the
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collection geometry. The precise predicted SOI TDOA from the collection geometry was

69.80 microseconds. The predicted SNOI TDOA from the collection geometry was 66.60

microseconds. Note that given a collection geometry like the one in Figure 2.2, the SNOI

can only bias the SOI estimate in the TDOA dimension. Therefore, the statistics for

the FDOA measurements were not considered, but in other scenarios it may need to be

considered in order to completely test the 2-D (and even 3-D) bias characteristics.

First, a baseline of performance was established using a collection length of 2048

samples. The left plot in Figure 5.9 shows a histogram generated using 1000 TDOA

measurements computed using the conventional CAF and 1000 independent simulated

data records. The simulations consisted of only the SOI with AWGN. The mean and

the variance of the measurements were computed to be 69.77 microseconds and 0.01

respectively. The estimated mean was reasonably close to the actual predicted TDOA

of 69.80 microseconds. The predicted variance using (2.36) was computed to be 0.008.

Notice that the distribution in the left plot of Figure 5.9 is approximately Gaussian,

except for an unexplained artifact on the right end.

The right plot in Figure 5.9 shows a histogram generated using another 1000 TDOA

measurements, but computed using the new alphaCAF method. Again, the distribution

is approximately Gaussian. The mean and variance of the measurements was computed

to be 69.61 microseconds and 0.094 respectively. The measured TDOA was less than

that measured using the CAF method. However, it is reasonably close to the predicted

TDOA and the difference is likely due to the difference in Matlab code for each process.

As far as the variance is concerned it was unlikely that (2.36) accurately applies to

cyclostationary joint estimation, as the data suggests. The statistics from the plots in

Figure 5.9 will be used as a baseline estimate for the next tests.

Next, the same analysis for both a SOI and a SNOI in AWGN was considered.

Figures 5.10 and 5.11 display histograms generated from 250 independent trials with
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Figure 5.9: Baseline histogram from 1000 trials computed using the conventional CAF
method for the SOI only scenario (Left). Histogram from 1000 trials computed using
the alphaCAF method for the SOI only scenario (Right).

TDOA measurements computed by both the conventional CAF and alphaCAF methods.

Two separate collection lengths were used with an SIR of 0 dB.

From the examples in Figures 5.10 and 5.11 the CAF method histogram means were

66.65 microseconds for the 2048 sample length collection and 66.62 microseconds for

the 4096 sample length collection. The variances were 0.011 and 0.005 respectively.

Remember from Figure 5.1 that the CAF was unable to generate unique peaks for both

the SOI and the SNOI. Instead, it produced one wider peak that was shifted toward the

actual SNOI TDOA value, resulting in a biased measurement. The histogram analysis

also suggests that indeed the conventional CAF method does produce biased estimates

when co-channel emitters are too close together. A much larger number of independent

trials would need to be used in order to more definitively determine the validity of the

bias claims.

From Figure 5.11 the alphaCAF method histogram means were 68.97 microseconds

for the 2048 sample length collection and 69.04 microseconds for the 4096 sample length

collection, with variances of 0.096 and 0.059 respectively. These measurements differ
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Figure 5.10: Histogram from 250 trials computed using the conventional CAF method
for the SOI and SNOI scenario. Data record length was 2048 samples, SIR = 0 dB
(Left). Histogram from 250 trials computed using the alphaCAF method for the SOI
and SNOI scenario. Data record length was 2048 samples, SIR = 0 dB (Right).

from the baseline measurement by approximetely 0.6 microseconds. However, they are

considerably better than the measurements from the conventional CAF method and less

than 1 microsecond in error from the baseline estimate. Also, the estimates tend to get

better with longer data records, and more trials are most certainly necessary for more

accurate results.

Next, the same analysis was considered for both a SOI and a SNOI in AWGN, but

for a lower SIR. Figures 5.12 and 5.13 display histograms generated from 250 TDOA

measurements computed by both the conventional CAF and alphaCAF methods using

two separate collection lengths and an SIR of -10 dB. For these examples the CAF

method histogram means were 66.65 microseconds for the 2048 sample length collection

and 66.62 microseconds for the 4096 sample length collection. These are identical to

the means for the SIR equals 0 dB examples. However, as expected the variances are

slightly larger. The alphaCAF method histogram means are 68.95 microseconds for

the 2048 sample length collection and 69.00 microseconds for the 4096 sample length

collection, with variances of 0.114 and 0.065 respectively. Again, the measurements from
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Figure 5.11: Histogram from 250 trials computed using the conventional CAF method
for the SOI and SNOI scenario. Data record length was 4096 samples, SIR = 0 dB
(Left). Histogram from 250 trials computed using the alphaCAF method for the SOI
and SNOI scenario. Data record length was 4096 samples, SIR = 0 dB (Right).

the alphaCAF method are much better than the CAF method measurements.

From the analysis presented in this section it is possible to suggest that the alphaCAF

method produces estimates that probably trend toward an unbiased behavior given

adequate collection lengths. The alphaCAF outperforms the conventional CAF method

when a SOI overlaps spectrally with a SNOI and their emitters are too closely located

for conventional methods to resolve separate estimates.
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Figure 5.12: Histogram from 250 trials computed using the conventional CAF method
for the SOI and SNOI scenario. Data record length was 2048 samples, SIR = -6 dB
(Left). Histogram from 250 trials computed using the alphaCAF method for the SOI
and SNOI scenario (Right).

Figure 5.13: Histogram from 250 trials computed using the conventional CAF method
for the SOI and SNOI scenario. Data record length was 4096 samples, SIR = -6 dB
(Left). Histogram from 250 trials computed using the alphaCAF method for the SOI
and SNOI scenario (Right).
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Chapter 6 – ALGORITHM PERFORMANCE — PARAMETRIC

TRADEOFFS

6.1 Resolution Capabilities

To further demonstrate the capabilities of the alphaCAF method, in this chapter its

resolution performance is compared to the resolution performance of the conventional

CAF method. The major advantage of the alphaCAF method over the conventional

CAF method is evidenced when a fixed-length data record is used to estimate TDOA and

FDOA when multiple emitters are contributing to the signal received at the collectors.

In this scenario the conventional CAF method may or may not produce separate TDOA

and FDOA estimates for each emitter. Recall from Chapter 2 that the width of the

CAF peak in the FDOA dimension is proportional to the inverse of the observation

time. Also, the width of the CAF peak in the TDOA dimension is proportional to the

inverse of the measured signal bandwidth. These facts set a limit on the resolution

capability of the conventional CAF method. If two emitters are spatially located such

that their respective signal correlations in the CAF surface are not resolvable, then

separate estimates for geolocation will not be possible no matter how much effort is

put into the computations — i.e., interpolation, etc. On the other hand, the alphaCAF

method exploits additional signal properties to overcome the resolution limitations of

the conventional CAF method. Since most of the man-made signals used in modern

communications have cyclostationary features, the alphaCAF method can be widely

applied to overcome the deficiencies of the conventional CAF method.

In order to demonstrate and assess the improved resolution capabilities of the al-



100

phaCAF method, this section begins with several simulated comparisons. Figure 6.1

shows four cross-section plots in the TDOA dimension. Each plot has the combined re-

sults from both a conventional CAF surface and two separate alphaCAF surfaces, each

one computed from the same data record. For each plot the data record consisted of

a SOI and a SNOI from two spatially separated emitters. The signal modulation and

frequency parameters were the same as those listed in Table 2.2. However, the indi-

vidual emitter TDOAs were simulated to vary from a large value (easily separable in

the CAF surface) to a small value (not separable within the CAF surface) in order to

demonstrate the higher resolution capabilities of the alphaCAF method. The individual

alphaCAF cross-sections in each plot where computed for the SOI and SNOI symbol

rates respectively.

It is interesting to notice that the alphaCAF method was able to separate the SOI and

SNOI as the difference in TDOA became smaller. On the other hand, the conventional

CAF method produced only a single peak for small TDOA differences. Likewise, Figure

6.2 shows a similar analysis for the FDOA dimension. The interesting observation about

the FDOA dimension is that the conventional CAF method gave a biased estimate for one

or the other of the two signals (SOI and SNOI) in almost every plot. In the bottom right

plot only a single peak is observed in the CAF and the peak is located almost halfway

between the two true SOI and SNOI TDOA values. It appears that FDOA estimation

using the conventional CAF method is more sensitive to co-channel interference than

TDOA estimation.

Figure 6.3 shows the same analysis as Figure 6.1, but for a longer data record length

of 8192 samples. Since TDOA peak resolution is only affected by the signal bandwidth

and not the observation time, Figures 6.1 and 6.3 are not noticeably different. Again, the

alphaCAF method separated the individual TDOA peaks for both the SOI and SNOI

while the conventional CAF method did not.
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Figure 6.1: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using a data record length of 2048 samples at a sample rate of 1MHz.
The TDOA difference between the SOI and SNOI varies from large to small starting at
the top left plot, getting smaller from left to right.

Figure 6.4 shows the same analysis as Figure 6.2, but with a longer data record

length of 8192 samples. It is easy to see that as predicted by theory, the FDOA peak

became narrower as the observation length increased. Both the conventional CAF and

alphaCAF FDOA resolutions scale similarly with increased data record size. With a

longer data record the conventional CAF was able to separate the SOI and SNOI peaks

in every plot. However, if the SNOI FDOA had been simulated to be even closer to the

SOI FDOA, then there would have been a point at which the conventional CAF would

have only produced a single peak.
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Figure 6.2: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using a data record length of 2048 samples at a sample rate of 1 MHz.
The FDOA difference between the SOI and SNOI varies from 1000 Hz to 250 Hz starting
at the top left plot, getting smaller from left to right.
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Figure 6.3: Demonstration of alphaCAF resolution performance compared to conven-
tional CAF using data record length of 2048 samples at 1MHz sample rate. The TDOA
difference between the SOI and SNOI goes from large to small starting at the top left
plot, getting smaller from left to right.
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Figure 6.4: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using a data record length of 8192 samples at a sample rate of 1 MHz.
The FDOA difference between the SOI and SNOI varies from 1000 Hz to 250 Hz starting
at the top left plot, getting smaller from left to right.
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6.2 Symbol Rate Dependencies

It is worth considering how the alphaCAF method is affected by the difference in

symbol rate between the SOI and SNOI signals. In other words, how well does the

alphaCAF method separate signals that have similar symbol rates? Figure 6.6 shows

two plots similar to the plots shown in the previous section for resolution assessment.

Each plot consists of overlaid cross-section plots from a conventional CAF surface and

two alphaCAF surfaces computed using the SOI and SNOI symbol rates. For each plot

the SOI and SNOI TDOAs were simulated to be large enough that the conventional

CAF could easily separate the individual signal correlation peaks. For each plot the SOI

symbol rate was fixed to the standard value listed in Table 2.2. The symbol rate for the

SNOI was varied. Both the SOI and SNOI modulations were BPSK. For the top plot

the SNOI symbol rate was selected to be 5 percent less than the SOI symbol rate. The

middle plot shows the results when the SOI and SNOI have symbol rates that are equal.

Obviously, in this scenario the alphaCAF method is reduced to the conventional CAF

method and separation of the signals in the cyclic frequency domain is not possible. In

the bottom plot the SNOI symbol rate was selected to be 5 percent greater than the SOI

symbol rate. Again, the alphaCAF method separates the individual signal peaks. This

demonstrates that even when the SOI and SNOI symbol rates are only a few percent

different the alphaCAF method can make reliable estimates.

The alphaCAF outputs do show higher amplitude side lobes around the main peaks

than the conventional CAF exhibits. The same thing can be seen in the conventional

cyclostationary TDOA algorithms introduced in Chapter 3, and does not seem to be

unique to the alphaCAF algorithm.
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Figure 6.5: Demonstration of alphaCAF resolution performance compared to conven-
tional CAF using data record length of 4096 samples at 1 MHz sample rate. The TDOA
difference between the SOI and SNOI is fixed to be large enough that the CAF method
can easily generate separate peaks . The SOI symbol rate is fixed at 16/256 the sample
rate. The SNOI symbol rate is shown for 15.2/256fs , 16/256fs, 16.8/256fs from top
to bottom respectively.
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Figure 6.6: Demonstration of alphaCAF resolution performance compared to conven-
tional CAF using data record length of 4096 samples at 1 MHz sample rate. The FDOA
difference between the SOI and SNOI is fixed to be large enough that the CAF method
can easily generate separate peaks. The SOI symbol rate is fixed at 16/256 the sample
rate. The SNOI symbol rate is shown for 15.2/256fs, 16/256fs, 16.8/256fs from top
to bottom respectively.
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6.3 Detection and Estimation

It was mentioned earlier that the CAF surface can be used as a detection statistic

to detect the presence of a SOI before estimating the TDOA and FDOA parameters

for geolocation. The same principle applies with the alphaCAF surface. To further

determine the detection and estimation capabilities of the alphaCAF method, Monte

Carlo testing (MCT) was performed. The MCT provided a numerical measure of the

performance of the alphaCAF and provided a means for direct comparison to the CAF

performance under identical scenarios. The testing also provided a means for comparison

to the stationary Cramer Rao lower bound (CRLB), which consists of (2.36) and (2.37).

Although the CRLB stated here applies to the conventional CAF and not necessarily

alphaCAF, it will be used anyway since the objective is to compare alphaCAF to the

performance of the conventional CAF.

One of the first things to consider in designing the MCT is the number of trials

needed per test case. In order to determine this number, the stability of the estimates

was measured by averaging the error results over the trails. The cumulative sum of the

squared errors in the TDOA and FDOA estimates was used as the metric, computed by

SETDOA(sec) =
1

L

L∑
l=1

(D − D̂l)
2 (6.1)

SEFDOA(Hz) =
1

L

L∑
l=1

(fd − d̂dl)2 . (6.2)

Another common rule-of-thumb is to use a factor of 100 more trials than the precision,

10(−x), desired. For example, if the desired precision is 1 decimal place, then 10(1+2),

or 1000 trials are needed. Figure 6.7 displays the TDOA stability plot from computing

the cumulative sum of the squared error over the trial number as a function of the trial
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number. An adequate number of trials would produce a small variation in the result.

It is easy to see from the plot that stability occurs just before 1000 trials. Thus, it was

concluded that 1 decimal place in precision was adequate, and 1000 trials was necessary

for each computational stage in the MCT. Figure 6.8 displays the stability plot for the

FDOA estimates. Although the FDOA stability was better than the TDOA stability

with fewer trials, it was decided to use 1000 trials for the FDOA MCT also in order to

achieve the desired precision.

Figure 6.7: TDOA Stability plot for alphaCAF using data record length of 2048 samples
at 1 MHz sample rate. Test environment A was used and 1000 trials computed for an
SIR = 0 dB.

Once the appropriate number of trials was determined, MCT was used to produce

a quantitative measure of the alphaCAF performance as a function of data record

length. For this analysis each trial produced an alphaCAF surface and cross-section

plots through the surface in the TDOA and FDOA dimensions. From the cross-section

plots, the TDOA and FDOA measurements were made. The error in the estimates was

computed using knowledge of the true TDOA and FDOA values. The same analysis was

done using the conventional CAF method. For each data record length the errors from
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Figure 6.8: FDOA Stability plot for alphaCAF using data record length of 2048 samples
at 1 MHz sample rate. Test environment A was used and 1000 trials computed for an
SIR = 0 dB.

the 1000 trials were used to compute the root mean squared error (RMSE) using

RMSETDOA(sec, dB) = 20 log10

[
1

L

L∑
l=1

(D − D̂l)
2

]1/2

(6.3)

RMSEFDOA(Hz, dB) = 20 log10

[
1

L

L∑
l=1

(fd − d̂dl)2

]1/2

(6.4)

where L is the number of trials and D and fd are the actual TDOA and FDOA respec-

tively, and D̂ and f̂d are the estimated TDOA and FDOA respectively.

In Figure 6.9, the TDOA estimation performance of the alphaCAF method was com-

pared to the conventional CAF and CRLB for a SOI only scenario. The SOI parameters

used are listed in Table 2.2.

The MCT results suggests that for the SOI-only scenario the conventional CAF

method produces better estimates than the alphaCAF method for short data record
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lengths. However, as the data record length gets larger than 2048 samples the alphaCAF

approaches the performance level of the conventional CAF. For TDOA estimation both

methods approach the CRLB as the data record length increases. The FDOA estimation

shows a similar performance difference compared to the CAF and CRLB. In general, the

alphaCAF starts to perform as well as the conventional CAF as data record lengths get

larger than 4096 samples.

Figure 6.9: SOI only TDOA estimate RMSE versus data record length computed using
1000 trials for each record length and an SNR = 20 dB at both receivers.

After setting a baseline for the conventional CAF and alphaCAF performance in an

SOI-only scenario, the same MCT using test environment A was performed. Recall that

his environment consisted of both a SOI and SNOI. However, for this test the location

of the SNOI emitter was moved far enough away from the SOI emitter so that the con-

ventional CAF could produce two distinct peaks in the TDOA/FDOA surface. Figure

6.11 shows the TDOA estimation performance for test environment A of the alphaCAF

method compared to the conventional CAF and CRLB. It is easy to see that there is

an overall degradation of the performance of the conventional CAF for this scenario as
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compared to the SOI only scenario in Figure 6.9. The degradation seems to get more

pronounced at longer data record lengths. There is little degradation in the alphaCAF

TDOA estimation performance. In fact, the alphaCAF performs better at longer data

record lengths than the conventional CAF for test environment A. This demonstrates

that the alphaCAF method can be used when severe co-channel interference is a prob-

lem. Figure 6.12 shows the FDOA estimation performance for test environment A of

the alphaCAF method compared to the conventional CAF and CRLB. Again, there is

a overall degradation of the performance of the conventional CAF compared to the SOI

baseline. The alphaCAF shows very little degradation due to the SNOI interference.

Similar to the TDOA performance for test environment A, the alphaCAF FDOA esti-

mation performance exceeds the conventional CAF performance for long data records.

Figure 6.10: SOI only FDOA estimate RMSE versus data record length computed using
1000 trials for each record length and an SNR = 20 dB at both receivers.
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Figure 6.11: SOI TDOA estimate RMSE versus data record length computed using 1000
trials for each record length and for test environment A. SIR = 0 dB at both receivers.

Figure 6.12: SOI FDOA estimate RMSE versus data record length computed using 1000
trials for each record length and for test environment A. SIR = 0 dB at both receivers.
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6.4 Parameter Separation

The most difficult scenario in which to estimate TDOA and FDOA is not just

a co-channel interference environment, but an environment where the SOI and SNOI

emitters are located spatially such that the SOI and SNOI TDOA and/or FDOA peaks

cannot be resolved in the CAF surface. It was demonstrated in previous sections of this

thesis that this causes the TDOA and/or FDOA estimates to be biased. This problem

can be visualized using MCT. Figure 6.13 shows the results of MCT for a fixed data

record length of 4096 samples, but as a function of TDOA difference between the SOI

and SNOI. The TDOA difference is a result of moving the SNOI emitter increasingly

closer to the SOI emitter. Figure 6.13 shows that the conventional CAF performs as

expected until the TDOA difference between the SOI and SNOI becomes less than the

CAF resolution spacing. At that point, the performance degrades dramatically as the

estimator produces biased results due to the SNOI. On the other hand, the alphaCAF

method only produces a single peak for the SOI by exploiting the different symbol rates

of the SOI and SNOI. It continues to produce good estimates as the TDOA difference

becomes less than the conventional CAF resolution size.

Figure 6.14 shows the results of the MCT as a function of FDOA difference between

the SOI and SNOI. The FDOA difference is a function of the two collection platform

velocity vectors and the center frequencies of the SOI and SNOI. Therefore, when the

SOI and SNOI emitters are spatially close together FDOA is primarily influenced by

the signal parameters. For the MCT results shown in Figure 6.14 the TDOA was fixed

and the FDOA adjusted by frequency translating the SNOI center frequency relative

to the SOI center frequency. Again, the plot shows that the conventional CAF method

starts to degrade dramatically when the FDOA difference becomes less than the FDOA

resolution size. However, the alphaCAF method continues to produce good estimates
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regardless of the FDOA difference.

Figures 6.13 and 6.14 present compelling evidence that when co-channel emitters

are encountered in a geolocation application it can be very advantageous to use the

alphaCAF method for estimating TDOA and FDOA instead of the conventional CAF

method. This will be demonstrated further in a simulated geolocation example in Chap-

ter 7.

Figure 6.13: TDOA estimate RMSE versus TDOA separation for SOI and SNOI scenario
computed using 1000 trials for each record length and an SIR = 0 dB at both receivers.



116

Figure 6.14: FDOA estimate RMSE versus FDOA separation for SOI and SNOI scenario
computed using 1000 trials for each record length and an SIR = 0 dB at both receivers.
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6.5 Modulation Types

So far, only BPSK signals for both the SOI and SNOI have been considered. In

modern complex signal environments there will be many different signals present with

various unique modulations. Therefore, the alphaCAF method has been tested using

a mixture of simulated modulation types. This was done to determine how well the

alphaCAF method can separate co-channel signals with disparate modulation types.

Figure 6.15 displays four plots similar to the ones presented in Section 6.1 for the

resolution performance analysis. However, the results shown in Figure 6.15 are from

a scenario where the SNOI is a amplitude modulated (AM) signal instead of a BPSK

signal. The parameters of the SNOI were chosen to be comparable to the SNOI listed

in Table 2.2. For example, the center frequency is the same. However, the modulation

rates are different with the AM signal bandwidth being less than the SOI bandwidth.

This is evident in the plots by the peak width in the TDOA dimension for the SNOI

being greater than for the SOI. The alphaCAF output is only computed for the SOI

since the interest is in separating it from the SNOI. It is clear in the plots that the

alphaCAF method can separate the SOI from the SNOI even though the SNOI is an

AM modulated signal instead of a BPSK signal.

Figure 6.16 shows the same analysis for the FDOA dimension. Again, the conven-

tional CAF is not able to separate the SOI from the amplitude modulated SNOI when

the FDOA spacing is less than the resolution size. At that point, the conventional

CAF produces a biased FDOA estimate due to the interfering signal. In contrast, the

alphaCAF method separates the SOI and produces a good estimate.

Figure 6.17 displays four plots showing the resolution performance analysis from a

scenario in which the SNOI is a frequency modulated (FM) signal instead of a BPSK

signal. Again, the parameters of the SNOI were chosen to be comparable to the SNOI
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Figure 6.15: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using amplitude modulated (AM) data record length of 2048 samples at
a sample rate of 1 MHz. The TDOA difference between the SOI and SNOI varies from
large to small starting at the top left plot, getting smaller from left to right.

listed in Table 2.2, with the center frequency being the same but the modulation rates

being different. Again, the alphaCAF output is only computed for the SOI. Like the

previous analysis, the alphaCAF method separates the SOI from the SNOI even though

the SNOI is an FM signal using random modulation instead of a BPSK signal. This is

a further demonstration that the alphaCAF method performance is independent of the

SNOI modulation type.

Figure 6.18 shows the same analysis for the FDOA dimension. Again, the conven-

tional CAF is not able to separate the SOI from the frequency modulated SNOI when
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Figure 6.16: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using amplitude modulated (AM) data record length of 2048 samples at
a sample rate of 1 MHz. The FDOA difference between the SOI and SNOI varies from
1000 Hz to 250 Hz starting at the top left plot, getting smaller from left to right.

the FDOA spacing is less than the resolution size. The alphaCAF method does separate

the SOI and produces a good estimate.
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Figure 6.17: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using frequency modulated (FM) signal data record length of 2048 samples
at a sample rate of 1 MHz. The TDOA difference between the SOI and SNOI varies
from large to small starting at the top left plot, getting smaller from left to right.
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Figure 6.18: Demonstration of alphaCAF resolution performance compared to the con-
ventional CAF using frequency modulated (FM) data record length of 2048 samples at
a sample rate of 1 MHz. The FDOA difference between the SOI and SNOI varies from
1000 Hz to 250 Hz starting at the top left plot, getting smaller from left to right.
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Chapter 7 – EMITTER GEOLOCATION

7.1 Historical Review of Emitter Location Methods

Due to the fact that emitter location methods have many applications, they have

been intensely studied in the past. Various algorithms and implementations have been

developed, and there exists a wide range of literature showcasing work on the topic.

Some of the most sophisticated methods for locating emitters use antenna arrays and

direction-of-arrival (DOA) techniques. However, these techniques are susceptible to

array calibration errors and can fail if the number of emitter wavefronts impinging on

the array is greater than one-half the number of array antenna elements [20]. For these

reasons, methods that locate emitters based on their TDOA and FDOA at multiple

collectors are preferred for application where robustness and cost is of primary interest.

The earliest published emitter location methods were applied to the location of

ground emitters using stationary land-based receivers [22]. These methods used a com-

bination of direction finding (DF) with what is now commonly known as triangulation.

One of the earliest algorithms was called Stansfield’s algorithm [22]. More recent mod-

ifications of the algorithm have been published by Gavish [28]. The concepts behind

Stansfield’s algorithm were later utilized using TDOA measurements [15]. The concepts

were later used in another algorithm called the multilateration algorithm, or hyperbolic

algorithm [30].

A novel algorithm based on TDOA measurements was later developed by Schmidt

[24] and has proved to be very useful in real applications. The first applications of Stans-

field’s methods to airborne receiver systems was presented by Ancker [25]. Later, many
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airborne methods were introduced [23] that used the simplifying assumption of a flat

earth surface and direct path propagation. Since these assumptions introduce significant

errors, other methods that did not make these assumptions were later developed.

The problem of locating a target position in 3-D space using range-difference mea-

surements was first described by Lee [30], and the first formulation of the emitter location

problem using multiple measurement types (TDOA with AOA, etc.) was presented by

Foy [27] to locate emitters on a plane. A general method of emitter location in 3-D

space using multiple measurement types was published by Wax [31]. Later, methods

using FDOA were developed and published by Chestnut [32] and Chan and Towers [26].

In general, all of the most popular emitter location algorithms cited above depend on

the measurements of TDOA and/or FDOA from a collected signal. With the increase in

wireless communications technology around the world and the increased use of the radio

spectrum, obtaining reliable TDOA and FDOA parameter estimates can be difficult.

In order for the emitter location algorithms to give reliable results as the RF spectrum

becomes more heavily used, methods for estimating TDOA and FDOA that are tolerant

to co-channel interference become increasingly important. In the next section one of the

most practical emitter location algorithms will be explained.

7.2 Conventional Geolocation

To determine the location estimate of an emitter in n-dimensions, it is necessary to

have n or more TDOA or FDOA measurements. Usually it is best to have more than n

measurements so that the geolocation problem is over-determined (more estimates than

location parameters to be evaluated). This also increases the accuracy of the location

estimate.

A measurement is used to find a line or surface of constant TDOA or FDOA on
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which the emitter is estimated to be located. In real three-dimensional space this line is

a curve on the surface of the earth. Two measurements will provide two lines or surfaces,

and the intersection of the lines or surfaces provides an estimate of the emitter location.

Since the measurements are subject to various types of errors, the line can be considered

a random variable. The variances of the lines can be used to generate an error estimate

contained within an error ellipse, to represent the accuracy of the estimate for emitter

location.

In order to demonstrate these concepts further, TDOA-only measurements will be

considered first. If two spatially separated time-synchronized receivers exist, then the

range difference for the two receivers can be expressed as

τ =
(R2 −R1)

c
(7.1)

where τ is the TDOA, R1 and R2 are the ranges from the emitter to the receivers, and

c is the speed of propagation. For a given value of TDOA, this equation represents a

hyperboloid of revolution on which the emitter lies [32]. For example, if the emitter is

located on the surface of the earth, then the intersection of this hyperboloid and the

earth surface is a curve on which the emitter is located. Using one more estimated

TDOA or FDOA values, the intersection of two curves will give the emitter location

estimate.

A measurement of FDOA can also be used to locate an emitter. FDOA is the

difference in frequency of the received signal at two spatially separated receivers, or the

change in range difference as a function of time. An FDOA measurement is a result of

exploiting receiver motion. Therefore, at least one of the receivers must be moving for a

measurement to be possible. Also, the greater the relative motion, the better the FDOA

measurement possible.
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A signal received by a moving receiver (assuming a stationary emitter) will have a

different observed frequency than the emitter’s transmitted frequency due to Doppler

shift. If the signal is collected over a time T , then the average observed frequency over

the collection time is

faverage = fc − (R1e −R1b)/λT (7.2)

where fc is the center frequency transmitted by the emitter, λ is the wavelength, and R1b

and R1e are the ranges from the emitter to the first receiver at the beginning and end

of the collection interval. Therefore, a measurement of this average frequency provides

a measurement of the change in range over the collection interval. This is similar to a

TDOA measurement, but with the two receiver locations corresponding to the receiver

locations at the beginning time and the end time of the collection. Since the emitter’s

transmitted frequency is not known, the difference of the average frequency measured

from spatially separated receivers is used. The resulting FDOA measurement represents

the difference between changes of range of two receivers and does not depend on the

actual transmitted frequency. This information provides a surface in space on which

the receiver must be located. By using two or more FDOA measurements, the emitter’s

location can be estimated. Note, that two receivers can obtain one TDOA measurement

and one FDOA measurement and can estimate the emitter’s location without the use

of additional receivers. Figure 7.1 shows a diagram depicting the concept of a line of

constant TDOA on the surface of the earth. Figure 7.2 shows the more conceptually

complicated lines of constant FDOA. When using both TDOA and FDOA measure-

ments, the intersection of the TDOA line and the FDOA line on the surface of the earth

provides the emitter location estimate. Figure 7.3 shows this concept with a single line

of constant TDOA and a single line of FDOA.

Using the average frequency observed by two receivers over the collection interval,
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Figure 7.1: Illustration of constant line of TDOA on the surface of the earth from two
receivers on a baseline.

Figure 7.2: Illustration of constant lines of FDOA on the surface of the earth from two
receivers moving on the same baseline.

FDOA is expressed by

FDOA = f1 − f2 =

(
fc
cT

)
(R2e −R2b −R1e −R1b) (7.3)

where again the subscripts indicate which receiver is being referenced and whether it is

at the beginning or end of the collection interval. Equation (7.3) defines a surface in

space on which the emitter must be located [32]. Analogous to TDOA, using two FDOA

measurements from separate collector pairs will give two surfaces. The intersection of

the two surfaces gives the emitter location estimate.
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Figure 7.3: Illustration of constant line of TDOA, or line of position (LOP), and line of
constant FDOA crossing on the surface of the earth. The crossing point is the location
estimate of the emitter.

The TDOA and/or FDOA measurements can be made using one of the estimation

methods introduced in earlier chapters. Usually these measurements are made for a

given collection snapshot, or data record. The measurements are passed to a geoloca-

tion algorithm that computes the emitter location estimate. One of the most popular

geolocation algorithms is the Newton-Raphson method. This method will be explained

in the next, along with how it is used to compute location estimates from TDOA and

FDOA measurements.

7.2.1 Newton-Raphson Method of Geolocation

The Newton-Raphson method is a technique that numerically approximates the root

of an equation. It is an iterative process that follows a set of guidelines to approximate

one or two roots of a function using its derivative and initial estimates of the roots. The

Newton-Raphson method can compute location estimates using only TDOA measure-

ments or both TDOA and FDOA measurements. Error sources such as system bias can

also be input into the computations. Next, is a simple example to show how this method
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works.

If a pair of collection receivers (See Figure 2.2) makes a measurement for an emitter

at position p = [x y]T , the measurements, m, can be related to the emitter position and

receiver positions and velocities, w, by the unspecified kinematics-based function

m = F (x, y,w) . (7.4)

To solve the geolocation problem the measurements m and known receiver kinematic

parameters w are used to find the emitter coordinates. At first glance, this seems like

a simple least squares problem where the goal is to solve the inverse problem and find

the relationship in (7.4), and solve for the parameter vector w. However, it turns out

that the right side of (7.4) is a non-linear function and therefore, not invertible. For this

type of problem the Newton-Raphson method excels [16].

The first step in using the Newton-Raphson method to solve (7.4) is to linearize the

nonlinear function by expanding it into the first few terms of its Taylor series approx-

imation around an initial guess of the emitter position, p0. This approximation gives

us

m = F (p) ≈ F (p0) + (p− p0)T∇F (p0) +
1

2
(p− p0)T∇∇F (p0)(p− p0) (7.5)

where the gradient of F (p) is given by

∇F (p) =


∂F (p)
∂x

∂F (p)
∂y

 (7.6)
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and ∇∇F (p) is the Hessian of F (p) given by

∇∇F (p) =


∂2F (p)
∂x2

∂F (p)
∂x∂y

∂F (p)
∂y∂x

∂2F (p)
∂y2

 . (7.7)

Now, after differentiating (7.5) with respect to p and setting it equal to zero, p can be

solved for to get

p = p0 − [∇∇F (p0)]−1∇F (p0) , (7.8)

which can be written into the form of an iterative technique to search for the position

estimate that minimizes F (p) by

pk+1 = pk − [∇∇F (pk)]
−1∇F (pk) . (7.9)

Now, if F (p) represents a weighted squared error function, the weighted least squares

iteration can be expressed as [16]

pk+1 = pk −
[
JTWJ

]−1
JTWe(pk)) (7.10)

where in the case of two measurements and two-dimensions, W is a 2 × 2 weighting

matrix and J is the 2×2 Jacobian of e(p). Note, that e(p) is the prediction error vector

given by

e(p) = h(p)−m (7.11)

where h(p) is a vector of measurement predictions for a given p. The known receiver

positions and velocities, along with the collection geometry model, are used to predict

the measured TDOA and FDOA values.
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Now, (7.10) can be expressed in a more compact form as

∆m ≈ A∆p (7.12)

where A is the pseudo-inverse from (7.10) with partial derivatives of a function that

relates the TDOA and FDOA measurements to the emitter position. For reference,

Appendix A derives the relationship between TDOA/FDOA and the emitter position in

greater detail.

Let the positions and the velocities of the collection receivers be denoted by p1, p2,

and v1, v2, respectively. The unknown emitter location p is assumed to be stationary.

Unit vectors pointing from the unknown emitter position to the two receiver positions

can be formed by

u1 =
p1 − p

|p1 − p|
(7.13)

u2 =
p2 − p

|p2 − p|
(7.14)

where | • | represents the vector L2 vector norm. The following expressions relate the

TDOA and FDOA parameters to the emitter position using the receiver positions, ve-

locities and the unit vectors from (7.13) and (7.14) above:

TDOA =
1

c
(|p2 − p| − |p1 − p|) (7.15)

FDOA =
fc
c

(
vT2 u2 − vT1 u1

)
(7.16)

where c is the speed of light and f0 is the center frequency of the transmitted signal

from the emitter. Taking the partials of (7.13) and (7.14) yields

∇TDOA =
1

c
(u2 − u1) (7.17)
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∇FDOA =
fc
c

(
(I− u2u

T
2 )v2

|p2 − p|
− (I− u1u

T
1 )v1

|p1 − p|

)
. (7.18)

Equations (7.15) and (7.16) are used to solve for the emitter position estimates.

The weighting or conditioning matrix W in (7.10) is chosen to account for the dif-

ferences in quality of the observations, and it is common to make it equal to the inverse

of the measurement covariance matrix M

W = M−1 (7.19)

where M can be written as the two-dimensional matrix

M =


1

σ1

0

0
1

σ2

 (7.20)

where σ1 and σ2 are error variances that are approximated using

σTDOA =
0.55

Bs

1√
TBγ

(7.21)

σFDOA =
0.55

T

1√
TBγ

(7.22)

where Bs is the signal bandwidth, B is the noise bandwidth, T is the integration time

and γ is the effective SNR defined in (2.20). Note that (7.21) and (7.22) are the same

relations introduced in Chapter 2 as the TDOA and FDOA CRLBs for the CAF method.

Now everything can be put together into a geolocation algorithm for estimating

the position of an emitter. The following is a step-by-step description of the Newton-

Raphson geolocation algorithm:
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1. Make initial prediction of emitter location p0 using collection geometry.

2. Compute predicted measurements h(p) using (7.15) and (7.16).

3. Calculate the prediction error using (7.11).

4. Exit algorithm if residual is small enough.

5. Update position estimate using (7.10).

6. Return to step 2 and repeat.

7.2.2 The Error Ellipse

After calculating the estimate for the emitter’s position and the variances that are

associated with the estimate, the error ellipse can be computed. Calculating the 95%

confidence ellipse is a standard technique and has been explained in [33]. The derivation

is not included here, but instead, the results from the liturature are used [16].

The covariance of the position vector can be expressed by

covP = (JTM−1J)−1 =

 σ2
x ρσxσy

ρσxσy σ2
y

 (7.23)

where J is the Jacobian of e(p), and assuming that covM−1 is symmetric. Note that the

lengths of the semi-axes for the error ellipse are the eigenvalues of the covariance matrix

and the orientation is determined from its eigenvectors [16]. The diagonal terms in (7.22),

σx and σy, are the variances, and ρ is the correlation coefficient for the parameters x

and y. The off-diagonal terms are the covariance for x and y. The terms in (7.22) are

used to arrive at the following calculations for the the semi-major and semi-minor axes

and the orientation of the error ellipse [33]:

(σa + σb)
2 = σ2

x + σ2
y + σxσy(1− ρ2) (7.24)
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(σa − σb)2 = σ2
x + σ2

y − σxσy(1− ρ2) (7.25)

where σ2
a and σ2

b are the variances of the contour error ellipse semi-major and semi-minor

axes respectively. Note that it is assumed that the errors are independent and normally

distributed with zero-mean. The chi-square distribution for the error variances is

a

σa

2

+
b

σb

2

= χ2 . (7.26)

The quantity χ2 can be found in statistical tables. For a 95% error ellipse, the result

is χ2 = 5.991. Using this with (7.26) to solve for a and b yields a = 2.448σa and

b = 2.448σb.

Figure 7.4 illustrated the error ellipse along with the various parameters used to form

it. The error ellipse orientation is given by

θ = arctan
2ρσxσy
σ2
x − σ2

y

. (7.27)

Figure 7.4: Illustration of the error ellipse.
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7.3 Geolocation and the alphaCAF Method

Now that the performance of the alphaCAF method has been established, and a

geolocation algorithm introduced, an example of how alphaCAF is used in an application

to get precise emitter location estimates can be presented. For the example an image

from Google Earth showing an airport and some open space along the Columbia River in

Oregon was used. The image and its approximate ground dimensions were used to setup

a flat earth coordinate system in a Matlab program. A SOI and SNOI were simulated

to originate coordinates that correlate with the locations indicated on the image. Note

that the SNOI was located at the airport and the SOI was from a lost and injured hiker

out in the open space to the image-right of the airport. The hiker location was chosen to

be about 1km away from the SNOI source location. Both the SOI and SNOI parameters

were the same as those listed in Table 2.2.

Both the conventional CAF and alphaCAF were used to estimate TDOA and FDOA

for the SOI. The alphaCAF used the known SOI symbol rate to compute the two-

dimensional surface with the cyclic frequency fixed. The TDOA and FDOA estimates

from each method were then passed to the geolocation algorithm presented in the pre-

vious section. Since it is not the intention of this dissertation to explore the details

of computing the error ellipse, the error ellipse was not actually computed, but was

contrived for demonstration purposes.

Figure 7.5 displays the Google aerial image, along with the overlaid SOI and SNOI

emitter locations and geolocation estimates computed using the TDOA and FDOA esti-

mates from the conventional CAF method and the alphaCAF method. The geolocation

estimate computed from the conventional CAF method was inaccurate and missed the

hiker by approximetely 0.5 km. This is due to the fact that the TDOA and FDOA

estimates passed by the conventional CAF method were biased estimates due to the
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SNOI interference. In contrast, the geolocation computed using the TDOA and FDOA

estimates from the alphaCAF method were fairly accurate. In a real application the al-

phaCAF method would increase the likelihood of locating the lost hiker when co-channel

emitters are problematic for conventional methods.

Figure 7.5: Simulated example of geolocation of a lost hiker in a co-channel signal en-
vironment using both the conventional CAF method and the new alphaCAF method.
Computed location estimates are overlaid on an aerial photograph. The actual location
of the SNOI emitter is at the airport. The hiker location is marked in the open space
to the right of the airport. The computed geolocation results are overlaid on the photo-
graph showing that the conventional CAF method produced biased TDOA and FDOA
measurements and therefore an incorrect geolocation. The alphaCAF method produced
good TDOA and FDOA estimates allowing the hiker to successfully be located.
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Chapter 8 – OBSERVATIONS AND CONCLUSIONS

8.1 Comments and Analysis Results

Conclusions can now be made about how the alphaCAF method performs compared

to the conventional CAF method when estimating TDOA and FDOA for co-channel sig-

nals that originate from emitters that are located close together. The advantages of the

alphaCAF method over the conventional CAF method have been experimentally demon-

strated both qualitatively and quantitatively. Although the CAF method can produce

estimates when TDOAs differ by more than the reciprocal of the signal bandwidths and

FDOAs differ by more than the reciprocal of the collection time, it fails to produce reli-

able estimates when these conditions do not apply. When an interferer is spatially close

to the source of a SOI, the conventional CAF method will generate a biased estimate of

the SOI TDOA and FDOA parameters. Depending on the relative strength and band-

width of the interfering signal, the bias can be significant. A biased estimate for TDOA

and/or FDOA will cause the geolocation algorithm to produce incorrect location esti-

mates. Therefore, the alphaCAF method for producing separated unbiased TDOA and

FDOA measurements in these conditions is a significant contribution. By exploiting the

cyclostationary properties of modern communications signals the alphaCAF method can

produce unbiased estimates when the conventional CAF method fails. The main con-

tribution is the use of one additional exploitable signal parameter, the cyclic frequency,

to separate signals previously inseparable by the conventional CAF. As most modern

communication signals tend to be bauded digital emissions, cyclostationary properties

are frequently exploitable.
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8.2 Areas for Further Research

There are several areas related to the work in this dissertation that would be in-

teresting to research further. I have selected a few areas that I believe to be most

important and potentially fruitful. The following subsections contain short descriptions

and recommendations for each suggested area.

8.2.1 Efficient Computational Methods

The alphaCAF method requires the computation of several cyclic spectrums. The

computation of the entire cyclic spectrum is considerably more complex and time-

consuming than computation of the conventional PSD. Over the past few decades several

efficient algorithms for computing the cyclic spectrum have been developed [11]. These

algorithms can be divided into two groups: the frequency-smoothing algorithms and the

time-smoothing algorithms. In this dissertation the cyclic spectrums were computed

without the advantage of these fast computational algorithms. It would be useful to

implement the alphaCAF method using one of the available computationally efficient

algorithms for computing the cyclic spectrums. Research into what effect this has on the

estimates would be necessary. Also, instead of just computing the cyclic spectrums using

known fast algorithms, a new fast algorithm for computing the entire three-dimensional

alphaCAF could be developed.

8.2.2 Cyclostationary Hybrid Method

The hybrid method introduced in Chapter 2 could be modified to exploit cyclo-

stationary signals. This would likely be another iterative method that would be useful

for applications where alphaCAF is too computationally demanding. It may also lead
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to other parameters being estimated, such as signal bandwidth. However, this method

comes at the cost of reduced sensitivity due to breaking up the data record into smaller

sub-records during the processing.

8.2.3 Analytical Analysis of alphaCAF Bias in Three-Dimensions

In this thesis an experimental approach was taken to determining if the alphaCAF

method produces unbiased estimates. In order for this to be more substantially proved,

an analytical proof would need to be worked out. Along with this effort a CRLB for

the alphaCAF estimator could also be found. Together these two results would be a

substantial contribution.

8.2.4 Additional Modulation Types

There are still many modulation types that could be explored and characterized

using the alphaCAF method. For example, frequency hopping signals can be challenging

to attempt to geolocate while still exhibiting cyclostationary properties. How does the

alphaCAF method perform when the SOI or the SNOI is of the frequency hopping

modulation type? Also, a logical extension of the BPSK signal work completed in this

dissertation is a similar assessment of quadrature phase shift keyed (QPSK) signals and

other variations such as OQPSK, MSK, GMSK, etc.

8.2.5 Least Squares Approach

An intuitive approach was used in deriving the alphaCAF method in Section 4.1.

Then a ML approach in Section 4.2 was used and compared to the results in Section
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4.1 to suggest that the alphaCAF method could produce unbiased estimates with suffi-

cient data record lengths. Research could be conducted into using a least squares (LS)

approach to derive a new correlation function that jointly estimates TDOA, FDOA and

cyclic frequency. This new function could then be compared to the alphaCAF and a per-

formance comparison made. In addition, other methods such as nontraditional weighted

forms could be explored that may lead to better estimators.

8.2.6 Time–Varying Doppler

For a stationary emitter, measurement of TDOA using data collected from two

spatially separated receivers will define a hyperbola on which the emitter must lie. The

intersection of multiple hyperbola gives the source location estimate. When the source

is moving, FDOA measurements must be used in addition to TDOA measurements to

estimate the source position and velocity. Although several techniques are available in

the literature for stationary emitter location, relatively little work is available for moving

source tracking. Since an emitter’s location is nonlinearly related to TDOA and FDOA

measurements, determining an emitter’s position and velocity from TDOA and FDOA

measurements obtained at a single time instant is not a trivial task [9]. Research could be

conducted into the effects of emitter movement on the TDOA and FDOA estimations

made using the alphaCAF method. Since the receiver platforms can also experience

non-uniform motion, methods for mitigating TDOA/FDOA estimation errors due to

this motion could also be explored.
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Appendix A – RELATIONSHIP BETWEEN FDOA AND TDOA

A simple relationship exists between the rate of change of the time-difference-of-

arrival, which I will call TDOA-dot, or ˙TDOA, and the frequency-difference-of-arrival,

or FDOA. Consider the two-dimensional cartesian coordinate system in Figure A.1,

where two receivers are initially located at (x1, y1) and (x2, y2) and a target emitter is

located at (xT , yT ).

Figure A.1: Collection geometry diagram.

The two receivers are moving with a velocity vector v1 and v2 respectively. Their initial

positions result in the ranges R1 and R2 to the target emitter. So, the positions at time
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t will be

x1(t) = x1(0) + v1xt and y1(t) = y1(0) + v1yt

x2(t) = x2(0) + v2xt and y2(t) = y2(0) + v2xt .
(A.1)

The ranges at time t will be

R2
1(t) = (xt − x1(t))2 + (yt − y1(t))2

R2
2(t) = (xt − x2(t))2 + (yt − y2(t))2 .

(A.2)

The TDOA of the emitter signal at the two receivers is

TDOA =
R1−R2

c
(A.3)

where c is the speed of light. The rate of change of TDOA, or ˙TDOA, is the derivative

of (A.3),

˙TDOA =
d(TDOA)

dt
=

d

dt

(
R1−R2

c

)
(A.4)

which becomes

˙TDOA =
1

c

[
dR1

dt
− dR2

dt

]
. (A.5)

Using (A.1) and (A.2), (A.5) can be written as

˙TDOA =
1

c

[
(xT − x1)v1x + (yT − y1)v1y

R1

− (xT − x2)v2x + (yT − y2)v2y

R2

]
. (A.6)

If the emitter transmits at frequency f , then due to relative motion between the receivers
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and the emitter, physics tells us that the signal frequencies at receivers 1 and 2 are

f1 = f (1 + v1r/c)

f2 = f (1 + v2r/c)
(A.7)

where v1r and v2r are the radial velocity magnitudes of the receivers with respect to the

emitter. Note that

v1r = v1 ·
R1

|R1|
v2r = v2 ·

R2

|R2|
.

(A.8)

Some algebra will show that

v1r =

[
(xT − x1(t))v1x + (yT − y1(t))v1y

|R1|

]

v2r =

[
(xT − x2(t))v2x + (yT − y2(t))v2y

|R2|

]
.

(A.9)

Since FDOA is defined as

FDOA = f1 − f2 , (A.10)

then using (A.7) and (A.9) it is possible to arrive at

FDOA =
f

c
(v1r − v2r) = (f)( ˙TDOA) , (A.11)

which is the relationship between FDOA and TDOA. It is clear from (A.11) that a

changing TDOA gives rise to a FDOA.



148

Appendix B – THE SIMULATED BPSK SIGNAL

A BPSK signal can be modeled by [9]

s(t) = a(t)cos(2πfct+ φ0) (B.1)

where

a(t) =
∞∑

n=−∞
anq(t− t0 − nT0) (B.2)

in which an is a binary (±1) sequence and q(t) is a finite-energy keying envelope given

by

q(t)
∆
=


1 , |t| ≤ T0/2

0 , otherwise

 (B.3)

where T0 is the keying envelop width.

It can be shown [13] that the spectral correlation function for s(t) is given by

Sαs (f) = 1
4T0

[Q(f + f0 + α/2)Q∗(f + f0 − α/2)] exp(−j2παt)

+ 1
4T0

[Q(f − f0 + α/2)Q∗(f − f0 − α/2)] exp(−j2παt)
(B.4)

for α = n/T0 and Q(f) being the Fourier transform of the keying envelope q(t)

Q(f) =
∫ ∞
−∞

q(t) exp(−j2πft) . (B.5)
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Likewise, for α = ±2fc + n/T0

Sαs (f) = 1
4T0

[Q(f + f0 + α/2)Q∗(f + f0 − α/2) exp(−j2π(α + 2fc)t)]

+ 1
4T0

[Q(f − f0 + α/2)Q∗(f − f0 − α/2) exp(−j2π(α− 2fc)t)] .
(B.6)

The cyclic correlation function can be found by taking the inverse Fourier transform of

(B.3) and (B.5). Note that all of the BPSK signals used in this dissertation for algorithm

examples were generated using a rectangular keying envelope.
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Appendix C – LIST OF ACRONYMS

Name Definition

AlphaCAF alpha cross ambiguity function

AM Amplitude modulation

AOA Angle-of-arrival

AWGN Additive white Gaussian noise

BPSK Binary phase shift keyed

CAF Cross ambiguity function

CCI Co-channel interference

CDMA Code division multiple access

CRLB Cramer Rao lower bound

DF Direction Finding

DOA Direction-of-arrival

FDOA Frequency-difference-of-arrival

FFT Fast Fourier transform

FM Frequency modulation

GCC Generalized cross correlation

GMSK Gaussian minimum shift keyed

IF Intermediate frequency

IFFT Inverse fast Fourier transform

MAI Multiple access interference
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Name Definition

MCT Monte Carlo testing

ML Maximum Likelihood

MSK Minimum shift keyed

OQPSK Offset quadrature phase shift keyed

PHAT The phase transform

PSD Power spectral density

QPSK Quadrature phase shift keyed

RF Radio frequency

RMSE Root mean squared error

ROTH The Roth processor

SCD Spectral correlation density

SCOT The smoothed coherence transform

SIR Signal-to-interference ratio

SNOI Signal-not-of-interest

SNR Signal-to-noise ratio

SOI Signal-of-interest

SPECCOA Spectral coherence alignment method

SPECCOR Spectral correlation ration method

TDOA Time-difference-of-arrival

TOA Time-of-arrival
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